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Quickest Detection Procedures and Transient Signal Detection

Bruce Broder

Abstract

This dissertation focuses on sequential decision procedures to detect changes in the

statistical model of an observed random process when these changes can occur at unknown

times. In the disorder problem, the samples are drawn according to one statistical model

until some unknown time after which all the samples correspond to a second model. In the

transient problem, the model then reverts back to the first one after some finite time.

A detection procedure known as Page's test is investigated for the quick detection of

the disorder. A simple asymptotic measure is defined and an analytic formula is developed

which can be useful in evaluating the performance of Page's test in various situations. By

examining the local performance, it is found that the performance is directly related to the

efficacy in the binary hypothesis testing situation, allowing the wealth of results in that

context to be transferred to Page's test.

Because Page's test appears to detect changes in distribution quickly, it is a candidate

for transient signal detection. It is used to detect transients of arbitrary spectral shape by

developing the test based on the DFT of the observations. This test is compared against

other sequential detection schemes and it is shown that Page's test performs very favorably

and is easier to implement.

The Gabor signal representation in which a signal is modeled by exponentially decay-



ing sinusoids is studied for its use in transient signal detection. A detection algorithm is

developed using the coefficients of these basis functions. The focus is on the procedure

for computing the coefficients and the effect on detection performance. A sequential algo-

rithm for computing the coefficients is derived so that a real-time detection scheme can be

implemented.

Finally, the optimal sample size for the detection of a transient signal which can occur

any time during a fixed observation period is determined. The optimization is done assuming

either that the transient can occur with equal probability any time during the integration

period or that it occurs at the worst possible time during the period.
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1

Introduction

1.1 Motivation

This dissertation focuses on sequential decision procedures to detect changes in the

statistical model of an observed random process when these changes can occur at unknown

times. In classical sequential detection procedures such as those considered by Wald [9], it

is assumed that all the time samples come from one statistical model or from an alternative,

i.e., the sequential binary hypothesis situation. The problem of detecting the change from

one statistical model to a second model had not been considered until the works of Page [3]

and Shiryaev [5-8].

Two types of detection problems which depend on the time element are considered in

this work: the disorder problem and the transient problem. In the disorder problem, the

samples axe drawn according to one statistical model until some unknown time after which

all the samples correspond to a second model. In the quickest detection formulation of this

problem, it is desired to detect the time of change with minimum delay for a fixed mean time

between false alarms. This is in contrast to the approach in the classical detection problem



where the probability of detection is maximized for a fixed probability of false alarm. The

quickest detection problem was first considered by Page [3] in the context of quality control

in a manufacturing process where it is desired to detect when the machinery fails and the

items subsequently produced are defective. This model also has applications in the area of

signal processing. For example, it could model a sonar observation of a submarine which

suddenly turns on its engines. In the transient problem, the samples again come from one

model -,ntil an unknown time, after which the samples are drawn from a second model which

lasts for a known or unknown but finite number of samples. Then, the samples are again

drawn according to the first statistical model. In this case, the performance of a sequential

detection procedure is evaluated according to the probability of detecting the transient and

the mean time between false alarms. The transient model is also applicable to a variety of

signal processing problems.

1.2 Overview

The body of this dissertation is divided into four chapters as summarized below. With

the exception of Chapter 3, which uses some material from Chapter 2, each of the chapters

can be read and understood independently.

In Chapter 2, a class of detection procedures is investigated in the context of non-

parametric quickest detection. The procedures are a generalization of a test first studied

by Page in 1954 [3] to detect a change in the distribution of random variables observed

sequentially in time. The goal is to detect the unknown time of change with minimum

delay while insuring infrequent false alarms. Originally, Page's test was implemented with
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the log-likelihood ratio for the two distributions under consideration. In this work, the test

is generalized by implementing it with other nonlinearities which do not depend on the

distributions. The linear detector, sign detector and dead zone limiter are investigated in

detail, but the theoretical results apply to arbitrary nonlinearities.

Methods for generating performance curves for Page's test are discussed. Based on

the performance curves, a simple asymptotic measure is defined and an analytic formula is

developed which can be useful in evaluating the performance of Page's test using different

nonlinearities for various noise distributions. Also, by examining the local performance

of Page's test, it was found that the performance is directly related to the efficacy in the

classical binary hypothesis testing situation. Thus, the wealth of results on using memory-

less nonlinearities in classical detection theory can be transferred to the quickest detection

problem using Page's test.

Because Page's test detects changes in distribution quickly, one might expect that it

would be useful for detecting transient signals which occur at unknown times. In Chapter

3, the performance of Page's test is evaluated for transient signal detection using the prob-

ability of detection and the mean time between false alarms as the performance criteria.

By developing a test based on the Discrete Fourier Transform of the observations, Page's

test can be used to detect transients of arbitrary spectral shape. This test is compared

against other sequential detection schemes including one proposed by Wolcin [10]. The re-

sults indicate that Page's test performs as well as the other tests in almost all the examples

considered and it is also the easiest to implement.

In Chapter 4, a signal representation due to Gabor [2] is studied because of its potential

use for transient signal detection. This idea was first suggested by Friedlander and Porat
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[1]. Essentially, the transient is modeled by a group of exponentially decaying sinusoids

with arbitrary arrival times. By decomposing a signal into a set of such basis functions

and finding the corresponding coefficients, a detection algorithm is developed. This chapter

focuses on the two methods of computing the coefficients, the biorthogonal function method

used in [1] and maximum likelihood estimation. It is demonstrated that detectors based

on the maximum likelihood estimates outperform those based on the other method. A

sequential algorithm for computing the maximum likelihood estimates is derived so that a

real-time detection scheme can be implemented.

Often when a real-time signal processor is built in hardware, the incoming data is

buffered into fixed-size blocks to facilitate the implementation. In Chapter 5, the optimal

block size for transient signal detection is determined. This is motivated by the work of

Pelkowitz and Schwartz (4] in determining the optimal block size for the quickest detection

problem. For the present situation, the sample size is optimized so as to maximize the

probability of detecting a transient that can occur at any time during the integration period.

The two optimization criteria considered are similar to those found in [4], the mean criterion

and the minimax criterion. In the me,n criterion, the sample size is chosen to maximize

the mean probability of detection, assuming that the transient is equally likely to arrive

any time during the integration period. In the minimax criterion, the optimal sample size

maximizes the probability of detection for the worst possible arrival time.

Finally, the original results of this dissertation are summarized in Chapter 6 along with

suggested areas for f,,rther research.
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2

Nonparametric Quickest Detection

and

The Performance of Page's Test

2.1 Introduction

When a change in the probability laws of a random process occurs, a disorder is said

to take place. The time at which Ae disorder occurs is called the disorder time and is

either an unknown parameter or a random variable with a known, assumed, or unknown

distribution. In the simplest case, a discrete-time random process, Xii = 1,2,3.... is

considered r36,37]. Before the disorder time, m, the random variables X 1 .X 2 ,...,Xmi-

are independent and identically distributed (i.i.d.) with distribution function Fo. and after

the disorder, the random variables Xm,Xm.l,... are i.i.d. with distribution F1 and are

independent of X 1,X 2 ,...,X _l. This model was originally used for quality control in

the manufacturing of a product where it is desired to detect when the machinery fails and

the items subsequently produced are defective [31]. The same model, however, can also

be used for signals in a radar or sonar observation. For example, with continuous-time

observations, consider a Brownian motion, Bi, whose drift changes at the disorder time to
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[37-39]. Specifically, let Bt satisfy the stochastic differential equation

dBt = u(t - to)dt + dw#

where wt is a Wiener process and u(t) is the unit step function

1(t 1, for t > 0

u~t) = O, otherwise.

This might be the situation when looking at a radar return with no targets present, when,

at some unknown time, a target comes over the horizon into the view of the radar.

Detecting the disorder can be thought of as a classical decision problem with an infi-

nite number of hypotheses, one hypothesis for each possible disorder time. In this sense,

detecting the disorder is more akin to an estimation problem where a combined "detector-

estimator" can either declare that a disorder is not present or give an estimate of the disorder

time when declaring the disorder present.

There are two distinct algorithmic approaches to the disorder problem, on-line and off-

line processing [2]. In the latter, the random process is observed over a finite time interval

[ti, t2] or only a finite number of samples are used [3,7,17,32,34,35,40]. The problem is then

one of classical hypothesis testing,

H0 . No disorder jccurs in [tI. t2]

versus

H1I A disorder occurs in [t1,t2].

In this case, the performance is measured in terms of the probability of detection versus

the probability of false alarm. Often, in order to obtain tractable results, the number of

samples is made asymptotically infinite [13-16]. In on-line processing, the observations are

7



processed sequentially and a finite observation interval is not assumed. Here, performance

is measured in terms of delay in detection when the disorder occurs versus the mean time

between false alarms when the disorder is absent. When this approach is adopted, the

disorder problem is termed the "quickest detection" problem to indicated the performance

criteria used for the sequential processing. This approach is taken in [1,4,21,25,31,36-39]

and will be used throughout this chapter.

There are two probabilistic approaches to looking at the disorder problem, the Bayesian

and non-Bayesian or maximum likelihood approach In the Bayesian approach [7,40],

which was first studied extensively by Shiryaev [36,37], a prior distribution is assumed for

the disorder time and one attempts to minimize some cost functional. Often the geometric

and exponential distributions are assumed for the discrete and continuous times cases,

respectively.

In the non-Bayesian or maximum likelihood approach to the disorder problem, no prior

distribution is assumed for the disorder time. In off-line processing this is equivalent to

assuming a uniform prior distribution over the observation interval, resulting in a detector

which computes the likelihood function of the data for all possible disorder times. In on-line

processing, the disorder time is considered an unknown parameter.

This work will consider only the non-Bayesian formulation of the quickest detection

problem. The situation is as follows. Consider the sequential observation of independent

random variables X 1, X2 .... such that Xj,...,X-1 have distribution function F0 while

Xmn,Xm+,... have distribution function F1 $ F0. The two distributions may not be

known exactly and the disorder time m is unknown. In this setting, it is necessary to

define appropriate performance criteria which do not depend on the true disorder time.
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As formulated by Lorden [25] for the discrete-time case, the criteria we use are the mean

time between false alarms and the expected delay which are defined as follows. Let N be

the stopping variable associated with the sequential detection algorithm. Let Pm denote

the probability measure when the disorder time is m and let Em denote the corresponding

expectation. Similarly, let P0 and E0 correspond to the case in which X 1, X 2 ,... all have

distribution F0. Define the worst case expected delay in detection D according to

D = sup ess sup Em{max(O,N - m + 1).i},
m>1

where 'm is the sigma algebra generated by {X 1,...,Xm}. In other words, D is the

smallest value such that for every m = 1,2,...

Em{ma.x(O,N - m + 1)I.Fm-i} < D

almost surely under P0 . The goal of the quick detection of the change is in competition with

the desire for a large mean time between false alarms T which is defined by T = Eo(N).

Thus, the performance of a given algorithm is specified by the pair (T, D). According to

these criteria, the optimal detector would have the minimum expected delay D for a fixed

mean time between false alarms T.

Using Lorden's criteria for the discrete-time case of i.i.d. observations and a change in

distribution, we will investigate one class of detectors which is sufficiently rich to include

the optimal detector. In particular, we look at a generalization of a control chart procedure

for a manufacturing process which was studied extensively by Page in 1954 [31]. Define a

cumulative sum statistic S. according to

n

s, = g(x,)
1(1)

SO = Z'

9



Here, g(e) is some function and z is a parameter called the initial score. For a given function

g and threshold h, let the stopping variable N be defined as

N = inf{n > 1 : S. > h}. (2)

The test procedure given by (1) and (2) has been studied only when g(e) is the log-likelihood

ratio, g(x) = log[dF(xjO)/dF(xJ0o)]. For this case, the detector has been given various

names in the literature including Page's test, the cum-sum, cusum, or cumulative sum test,

and Hinkley's detector. We will refer to the test with arbitrary nonlinearities also as Page's

test.

When Page's test is implemented with the log-likelihood ratio, it is equivalent to a

sequential implementation of the maximum likelihood detector. The log-likelihood function

of the observations I(X 1,..., Xn) is

rn-1 n
l(Xl,...,X.)= logldFo(_V,)j+ E log[dF1(X,)j

=1 mi=r

which can be rewritten

n n
t(Xl,...,X") = log LdF(i)J + log[dF(X,)].

t=m i=

Since the last term does not depend on the disorder time, the maximum of the likelihood

function is obtained by using (1)-(2) with the log-likelihood ratio and initial score So = 0.

Lorden proved that for T > To, this detector minimizes the delay in the class of all detectors

of form (1)-(2), asymptotically as To tends to infinity. In [29], Moustakides extended this

result to the non-asymptotic case.

Dyson [9] investigated the locally optimal or weak signal version of Lorden's result.

Specifically, let P0 be the distribution of the i.i.d. observations before the disorder and

let P9 be the distribution of the i.i.d. observations after the disorder. We assume that 0

10



parameterizes a family of distributions {P8, > 01 which includes P0 and lim 9_ 0 Pe = P0 .

Let pa(x) be the probability density function corresponding to Pe which is assumed to exist

and to be differentiable with respect to 0. Then, for small 0 the optimal detector in the

sense of Lorden is Page's test with g(x) given by

o 9(x)p } - B(O)l(X oo 09Xj =0

where B(O) is of 0(02).

In this chapter we investigate the performance of Page's test for arbitrary nonlinearities

g(z) in the local and non-local situations. In particular, we will look at nonlinearities which

do not require knowledge of the probability distributions before and after the disorder. In

that sense, the results have applications in nonparametric quickest detection situations.

Specifically, we will examine Page's test when implemented with the linear detector, the sign

detector, or the dead zone limiter. The analysis for the linear detector can be applied to a

large class of nonlinearities by using a transformation of random variables. The sign detector

and dead zone limiter are a special cases of a class of detectors for which the performance

can be obtained in closed form. It should be noted, however, that the performance of Page's

test with a particular nonlinearity will depend on the actual distributions of the observations

so that the detector is not nonparametric in the most strict sense.

All previous work in nonparametric detection in the disorder problem has been done

in the off-line setting. In [33], Page uses a fixed sample size (off-line) version of (l)-(2)

implementing the sign detector and evaluates the performance in several examples. Tests

based on the ranks and signs of the data are examined in [3,17]. Other nonparametric

tests include extending the classical tests such as the Kolmogorov-Smirnov test and the

Cramer-Von Mises test to the disorder problem [8]. These tests look for a change in the

empirical cumulative distribution function to determine that a disorder has occurred and

11



their performance does not depend on the true distributions. Also in an off-line framework,

Pettitt [34,35] uses an extended Mann-Whitney test which uses only the signs of the dif-

ferences of the observations and is also truly nonparametric. The only related work in the

sequential framework is the analysis of Page's test with observations drawn from {-1, +1}

done by Basseville [1], but the results were not applied in the nonparametric framework.

Because (1) involves sums of a memoryless nonlinear function of the observations, one

might expect there to be a relationship to the classical detection problem

H0 X 1,X 2 .  Xn are i.i.d. F distributed

versus

H,: X 1,X2 ,...,Xn are i.i.d. F distributed

using Sn as the test statistic. For the case when FI(x) = Fo(x - 0) corresponding to a

shift in the mean of the distribution Fo, the efficacy E of the detector is a measure of the

detector performance in the classical problem for a vanishingly small shift in mean and

asymptotically large sample size. In Section 5, it will be shown that the performance of

Page's test in the weak signal case is related to the detector efficacy. For the memoryless

nonlinearity g(e) the efficacy is

('d E2Sj j

C= lim lim (TO
- o-o n Var[SIHo]

Var[g(X)Ho]

Larger values of the efficacy indicate better detector performance. The nonlinearity which

maximizes the efficacy, the locally optimal nonlinearity g9o(Z), can be shown to be [19,23.28]

fo(x)

12



where fo is the probability density function for F0 . In this case, the efficacy is equal to

Fisher's Information If [22]

&=If= Jfo(x) C - dx.
-00 fO (X)

The remainder of this chapter is organized as follows. In Section 2, a method is pre-

sented to compute performance curves for Page's test and several examples are given. The

performance curves suggest an asymptotic performance measure which is defined and an-

alyzed in Section 3. Properties of this measure and examples of its use are presented in

Section 4. The performance of Page's test in the weak signal situation is analyzed in Section

5 and conclusions are presented in Section 6.

2.2 Performance Curves

We have seen that the mean time between false alarms is T = Eo(N). Although not

true in general, the expected delay given by (1) is simply D = EI(N) for Page's test [2.25].

Thus, the computation of both of these quantities, T and D, simplifies to determining the

average sample number (ASN) of Page's test when all the observations are independent and

identically distributed with distribution F, that is when no change in distribution occurs.

Several approaches have been taken to compute the ASN for Page's test. Some have used

Monte Carlo simulations as in [1], but this will be computationally expensive if results are

desired for a large mean time between false alarms. In [6], the interval between 0 and h is

discretized and the resulting random sequence is analyzed using Markov chains. For fixed

values of h, this approach seems promising. However, in order to generate performance

13



curves, pairs of (T, D) are required for many values of h. The Markov chain approach

requires the invcrsion of a matrix which does not permit a recursive implementation as h

increases. Our approach involves discietizing the integral equations which are required to

compute the ASN and solving a system of linear equations. This approach has been used

in [12] and we will propose an alternate technique which allows recursive computation as h

increases.

To determine the performance curves indicating expected delay versus mean time be-

tween false alarms for Page's test, it is useful to reformulate the sequential procedure in

(1)-(2). It is not difficult to see that the following test is equivalent [31]. Define the test

statistic Sn recursively by
Sn = max0, S,_i + g(Xn)}

(3)

and the stopping variable N is given by

N = inf{n -Sn > h}. (4)

This formulation can be thought of as a repeated Wald sequential test with boundaries 0

and h in the following sense. Let Al be the stopping variable for the Wald test given by

Al=inf{n:S. <0orSn >h} (5)

where Sn is defined in (1). If the Wald test hits the lower boundary 0 first, then another

Wald test is performed, and so on, until such time that a Wald test exceeds the threshold h.

See Figure 1 for an illustration of the equivalent implementations of Page's test in (2) and

(4).

For convenience, we parameterize the distributions as follows,{ Fo(x), if0 = 9 0
F(zIO) = FI(x), if 0 = 01

1I



Sn

N

h

(a)

h

N

(b)

Figure 1. Two equivalent implementations of Page's test. In (a), the cumulative sum
statistic S. is compared to the previous minimum value of the statistic. In (b), a two-sided
sequential test is implemented in which the test statistic Sn is reset to zero if it would have
fallen below zero.
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where 00 and 01 are some parameters such as the means of the random variables before and

after the disorder. Denote by AK(z, 0) the average sample number of test (4) with initial

score 30 = z when the {Xj} are i.i.d. F(O) distributed, i.e.,

K(z,e) = E[NISO = z,0].

Similarly, let M(z,O) be the ASN of the Wald test (5) and let P(z,0) be the operating

characteristic (OC) of the same Wald test, that is, the probability of hitting the lower

boundary first

P (z, o) = P{SAI < 01.

Then, the ASN of Page's test can be computed from [31]

A'(Z,0) - M(0,0 P(z,O) + M(z,O).
1 - P(0, 0)

The mean time between false alarms T is the average sample number of test (4) with initial

score 30 = 0 and Xi - F(Oo),

T = A'(O,0o) " (0" °) (6)
1- P(0, 0o)

Recall that the delay in detection D as defined by Lorden is in effect the worst possible

expected delay. Using the formulation in (4) (see Figure 1(b)), it is obvious that the worst

case delay occurs when the test statistic is zero at the disorder time, 3rm = 0, since then

the test statistic has the furthest to travel when the disorder occurs. A proof of this result

can be found in [2,25]. Thus, the delay is

D=V(0,) (0,M( , ()
D- (P(0,01 ) (7)

In this way, calculation of the performance curves of D vs. T only requires calculating the

ASN and OC of a Wald test with initial score S0 = 0 for the two possible distributions.

When the linearity g(z) = z is used, the average sample number and operating charac-

teristic of the Wald test with initial score z satisfy the following Fredholm integral equations

16



of the second kind [11,31,32,44]:

h

M(z,O) = 1 + j M(z,O)dF(x - zI0)
0 zE[0,h] (8)

h

P(z,G) = F(-zI0) + f P(z,O)dF(x -z10)
0

No analytical solutions can be found for these equations and we must resort to numerical

techniques. We replace these integrals with an approximation according to

J

M(z,G) = 1 + w (X j,G)f(Xi - zIp)
j =1 (9)

P(zO)= F(- zo) + Z w3P(xjO)f(Xj - zIO),
j=1

where 4M(z,O) and P(z,G) are the solutions, and the weights {w 3 } and points {z 2 } are

chosen according to some rule. In [12], this approach is taken where the points {x} are

the "Gaussian points" or the roots of the Legendre polynomial and where the weights {wj}

are the Gaussian coefficients [18]. Now, by evaluating (9) at the points {z } which are

substituted in for z, we obtain two systems of linear equations which can be solved by

ordinary techniques to find the approximate solutions of the original integral equations.

By substituting these values back in the right hand side of (9), M(z,O) and P(zO) can

be evaluated for any values of z of interest, and in particular for z = 0. This method of

solution is called the Nystr6m approximation method for the solution of Fredholm integral

equations of the second kind [5]. The matrix equations to be solved are of the form

(I- A)u = v (10)

where the matrix (I - A) has entries (I - A)ij = bij -wjf(zi -zjlO). Because of the intro-

duction of the weights, this matrix has no special properties that allow efficient solution of

the linear equations. Thus, they must be solved by a technique such as Gaussian elimination

which requires that the number of multiplications for the solution is 1/3 J 3 + O(J 2 ) [24].
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Instead of using the Gaussian points and weights, we can use a simple rectangular

approximation to the integrals on the right side of (9). Again, this results in two sets of

linear equations of the form (10) where (I - A)lj = bij - Af(xi - xj1O) for A = h/J. This

matrix is Toeplitz and there exists an efficient algorithm related to the celebrated Levinson's

algorithm for the solution of the equations where the number of multiplications is 3, 2 +O(j)

[27]. Moreover, the algorithm for the solution is a recursive one which computes the solution

for lower order systems to arrive at the solution for the desired order. In other words, in

solving for 5(0, 6) and ,M(0, 0) for a given h, the solution is also computed for hi = iA for

i = 1,...,J - 1 with no extra computation. In contrast with this, the Nystr6m method

requires that the linear equations must be solved anew for each different value of h because

the matrix is very general.

The results in [12] indicate that in certain situations only fifteen points may be re-

quired in the Nystr6m method for accuracy to six decimal places. It is well known that

many more points are required for accurate solutions using the rectangular approximation.

Our experimental results show that if very accurate solutions are required, the Nystrbm

method is preferred. However, as pointed out in [12], for 1 - P(0,0) < 10- 5 the number

of points may need to be increased. We have found that fifty to one hundred points may

be needed to obtain a reasonable solution for large threshold values h while the less ac-

curate approach using the rectangular approximation may only require 250 points. Since

the Nystr6m method must be repeated many times to specify the performance curve by

calculating pairs of (T, D) for many values of h, it may be worthwhile to consider the faster

approach using the rectangular approximation. Although speed is not necessarily a factor

in calculating the curves, they may take mz iy hours of computation time for large values

of h for the faster method, so that one may want to consider speed over accuracy.
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Both algorithms were implemented on a computer. It was found that the solution for

P(0,0) became inaccurate as h grew, to the extent that for h large enough P(O,0) was

computed to be larger than one. Since what is required to calculate '(0,9) is actually

Q(010) = 1 - P(O, 0), the integral equation for Q(z, 0) was utilized. Substituting 1 - Q(z, 0)

into the integral equation for P(z, 0) yields
h

Q(zl8) = 1 - F(h - z10) + J Q(xIO)dF(x - z10).
0

Q(010) was computed according to both algorithms and the solutions were better behaved

for larger values of h.

The procedure above could theoretically be applied when g is an arbitrary nonlinearity

by making the transformation of random variables, Y = g(X), so that the resulting detector

is again linear.

When the nonlinearity g takes only the values in {-1,0,+1}, the solution for A'(O,O)

is known exactly in closed form from results in random walk theory. Such a nonlinearity

will be called a random walk nonlinearity. Examples of such nonlinearities are the dead

zone limiter where
- 1, for x <-d

g(X) = 0, for -d < x < d
1, forx>d

and the sign detector which is obtained by setting d = 0. For the boundary h a positive

integer, the ASN of Page's test with a random walk nonlinearity is [26]

h(i+h) ifp=q

p + q
A'(0,1 [0)()h (11)

_-' p - h] i f p 54 q

where p = p(O) and q = q(O) are defined by

p = P{g(.X)= 1101

q = P{y(.X')= -11o}.
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Thus, the performance curves are found by computing T = A'(0,0 0) and D = N'(0,0 1 ) for

a range of boundaries h = 1, 2,....

To demonstrate the use of the performance curves, the following disorder problem is

considered. The distributions before and after the disorder time axe given by the symmetric

signal in additive noise situation where F(zIOo) = Fo(x + 9) and F(xO19) = Fo(x - 0) for

0 > 0. The noise distributions considered are the Gaussian with density

fO(X)= 1 exp(-X 2 /2a 2 ),

the Laplace with density

fO(x) = (2o2) 1/2 exp(-v!2 /a),

and the Gaussian-Gaussian mixture with ,m,-iiv

I X2 "2a2 1 T2/.- r2

foi X) = (1- E)- / + E 1 -" /"C.

The Gaussian-Gaussian mixture density is the first two terms in Middleton's Class A

model [19,43j and has been used to model impulsive noise. The parameter c indicates

the degree of contamination and is typically in the range (0,0.25). The relative strengt',
of the contamination is given by the power ratio 1 2 a/o5 which generally has values

between 100 and 10,000. We use this distribution because by adjusting the parameters we

can determine the performance for a wide range of distributions with different properties

such as tail heaviness.

The nonlinearities implemented in Page's test are the linear detector g(x) = x, the sign

detector, and the dead zone limiter. They are shown in Figure 2 along with optimal nonlin-

earities, the log-likelihood ratios, for signal-to-noise ratios (SNR) of 0 dB and -20 dB. The
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dead zone limiter has the parameter d, which can be optimized for the particular distribu-

tion. However, since we assume that the true distribution is unknown, this optimization can

not be done a priori. Instead, we use the optimal d which maximizes the classica! detector

efficacy in the ordinary binary hypothesis testing problem for the Gaussian distribution

regardless of the true distribution so that d = 0.612or [20]. Thus, we assume that the noise

variance is known or can be estimated.

Figure 3 shows the performance curves of the three detectors for signal-to-noise ratios

of 0 dB and -20 dB. The results for the linear detector were obtained using the rectangular

approximation method. For the relatively large SNR of 0 dB, the performance is good

in nearly all situations as shown in 3(a) - only a delay of a few samples for a mean

time between false alarms on the order of 10,000 samples. The sign detector and dead

zone limiter perform well for heavy-tailed distributions (the Laplace and the Gauss-Gauss

mixture) whereas the linear detector can perform poorly. In Gaussian noise, the linear

detector outperforms the others. These results are analogous with those obtained in th,

classical detection problem (20,42]. When the SNR is -20 dB, we see from Figure 3(b) that

the performance is considerably degraded. Now, for a mean time between false alarms of

10,000 samples, the delay is on the order 100 to 200 samples. The performance curves can

be explained qualitatively by comparing the nonlinearities implemented with the optimal

nonlinearity, the log-likelihood ratio. The linear detector is optimal for Gaussian noise, to

within an inconsequential scale factor. However, for the Laplace and mixture distributions,

an important feature of the optimal nonlinearities is the limiting of outl1krZ, a feature also

present in the sign detector and the dead zone limiter.

There is an important observation we can make about the curves, independent of the

detector and the underlying noise distribution. A common feature of all the performance
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curves is that for large values of the mean time between false alarms T, the delay D appears

to be a linear function of the logarithm of T. Moreover, for large T, the ratio log(T)/D -

which is the reciprocal of the slope - would be an appropriate performance measure. In

the following section we clarify these statements.

2.3 Asymptotic Performance Measure

As suggested by the performance curves in the previous section we define an asymptotic

performance measure 1r for Page's test given by

77 1im log T

T-oo D

lir logT (12)D-c D

rli logT

h-oc D

where the natural logarithm is used. The measure 77 is the reciprocal of the asymptotic

slope of the performance curve, and larger values of 7 indicate better performance. In the

remainder of this section, we will derive a lower bound for 'his measure and show that it

has some interesting and useful properties.

At this point we review a result due to Lorden [251. Let L be the stopping variable of

a one-sided test, that is,

L = inf{l' Z > h},

for some statistics {Z 1} which are functions of the i.i.d. observations X 1, X 2 ..... For k =

1,2,..., let Lk be the stopping variable of the same test applied to Xk. Xk+l .... and define
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Nas

N = min{Lk + k - 1).
k>1

N is the stopping variable of the test which stops when the first of the tests applied to

Xk,Xk+l,... for k = 1,2, ... stops.

Theorem. (Lorden [25]) Let L be such that P{L < ool0o} _< a. Then,

E[NA1oJ _> I/a,

and for any alternative distribution,

E[N¥10x] < E[L1O1].

This theorem is relevant because Page's test with zero initial score is exactly the first

Wald one-sided sequential test operating on Xk,Xk+l,... for k = 1,2,... to stop as is

shown in the example given in Figure 1(b). This can be seen from the view that when the

test statistic Sk would have fallen below zero - indicating that the test starting from k + 1

will reach the boundary first - Sk is reset to zero indicating that a new test is starting

from k + 1.

To use the theorem, we examine the Wald one-sided test with stopping variable L

defined by

L = inf{m :Sn > h}, (13)

where
m

Sm= g(x,). (14)
t=1

The probability that this test terminates, that is P{L < c}, is the probability that the

boundary h is exceeded. Although this can not be computed exactly for arbitrary jumps

g(Xi), an estimate is provided by the so-called Wald approximations and bounds [11,44].
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First, we recall some results on the non-zero root Lo = w(O) of the moment generating

function identity

E[exp{wg(X)} O] = 1.

The existence and uniqueness of such a root is guaranteed when g(X) has a non-zero mean

and satisfies certain other conditions [11,44]. For our purposes, we will assume that a unique

root exists. A key property of this root is that if E[g(X)O] > 0 then the root is negative

whereas if g(X) has a negative mean, the root is positive [10]. When we are trying to

detect a change from a negative trend to a positive one, we assume that E[g(X) Oo] < 0 <

E[g(X)IO1], implying that w(01) < 0 < ,(0o).

In order to compute the probabilities and expectations required in the theorem for the

one-sided test (13), we consider the two-sided \Wald test with boundaries b < 0 < h given

by the stopping variable .l,

M = inf{m : Sm < b or Sm>h}, (1)

with Sm as in (14). The one-sided test is now the limit of two-sided tests as b tends to

negative infinity, i.e.,

lir AI = L
b--oc

in probability. Define the operating characteristic P(O) of the two-sided test according to

P(O) = P{S. < b).

The following bounds for the OC will be used when o(O) > 0 [11,44]:

exp{h.(0)} - 1 <((O)exp{h,(9)) - 1

exp{h(0)} - K(0)exp{bL:(O)} - P(9) . 6(0)expjh.;(O)) - exp{b.;(0)} (16)
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where

K(9) = inf E [exp{L.(O)g(X)}jexp{w(O)g(X)} < 0 O]=1< <oo -

(0) = sup E [exp{ J(O)g(X)}Iexp{,,(O)g(X)} > 10< <1 I-

It follows that K(0) < 1 and 6(0)> 1. Also, we will use the following bounds for the average

sample number M(0) = E[M1] of the two-sided test [11,44]:

> bP(9) + [h + "y(O)][l - P(9)] if E [g(X)I9] < 0
E[g(X) 9]

M() b2 P() + 2 [1 - P()) if E (g(X)19] = 0 (17)

M(9) E[g2(X)19]
< bP(9) + [h + -y(9)][1 - P(9)] if E [g(X)19] > 0

E[g(X)I [ >

where

-1(0) = sup E[y(X) - rlg(X) > r;0].
T>O

The probability that the one-sided test (13) does not stop under 00 is given by the limit

as b tends to negative infinity of the probability that the two-sided test (15) terminates at

the lower boundary b:

P{L = I[0o} = lir P(Oo )

> lill exp{h,(9o)} - 1
b---e exp{h.'(90)} - c(0O)exp{b.,(0o)}

exp{ho(00)} - 1
exp{h-,(O0)}

Therefore, the probability that the one-sided test terminates is upper bounded by

P{L < oel00} < exp{-h (00 )}.

An upper bound for the average sample number of the one-sided test £(91) can be

obtained by using the upper bound for the ASN of the two-sided test ."(6 1) and taking
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the limit as b tends to negative infinity:

(01)= E[L10 1 = lir M(0 1)

< lir bP(9) + [h + (8)][1 -

b--c E[g(x)O1]

The right hand side is a decreasing function of "P(01) so that the inequality is preserved if

we replace P(0 1 ) by zero resulting in

,CA) = ElLt1 < [h + -y(01)]
- E[g(X)10 1]

Now, Lorden's theorem can be applied to yield results on Page's test with threshold

h, increments g(X), and zero initial score. The mean time between false alarms T is lower

bounded by

T = E[NISo = 0,00] _ exp{hw(0o)} (18)

while the delay D is upper bounded by

[h + y)(01))
D = E[.NISo = 0,011 < E[(X)+-1 ] (19)

Using these results, we can lower bound the performance measure

7 H-1log T77 = lira og

h-o D

im~ log[exp {hW(Oo)}]h h-oc [It + "y(O1)]/E[g(X)JOj]

= w(Oo)E[g(X)10u]

assuming that -y(01) is finite. (This is a reasonable assumption and is obviously satisfied

when g is a bounded function.)

The same result can be obtained in a more direct manner by adopting the approach

in [30]. Using equations (5) and (6), we see that the ASN of Page's test A"(O.) is the ratio
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of the average sample number to the operating characteristic of a two-sided Wald test with

boundaries 0 and h. Now, by using the bounds in (16) and (17), we can find bounds on

A(0,8) directly by forming the desired ratio and taking the limit as b tends to zero. We

find a lower bound for the mean time between false alarms T when E[g(X)1Oo] < 0:

T = .N(O, 0 ) = lim M( 0)

b60 1 - P(Oo)

> lir bP(O) + [h + -t(Oo)][1 -P(Oo)]
-blo E[g(X)I0o][1 -/:'(0o)]

lim 1 bP(Oo) h + y(O)
blO E[g(X)0o] 1 - P(O0) E[g(X)Oo]"

The right hand side is a decreasing function of P(0o) since b < 0. Thus, if we replace P(Oo)

by its upper bound in (16) we get

T>lim b 6(Oo)exp{hw(Oo)} - 1 h + -y(Oo)

bl- E[g(X)[Oo] 1 - exp{bL'(00)} E[g(X)10o]"

Both the numerator and denominator above are zero when b = 0, so we use L'Hopital's rule

to find
1 1 -6(00)exp{h,;(o)} h + y(Oo)

E[g(X)1Oo] E(00) + E[(X)l0o]

1 1 - exp{h,(0o)} h + "y(Oo)
E[g(X)leo] +(0o) EL (X)Io]

where the last step follows from the fact that 6(OO) > 1. If E[g(X)10o] = 0, then we use

(17) to obtain

T = A(0,o) = lir ( 0 )
bto 1 -P(eo)

> 1.n b2P(eo) + h2[1 - -P(0o)j
blo E[y2(X)leo][1 - P(9o)]

- b2 P(90 ) h2

blO E[g 2(X)jto][1 - P(Oo)] E[g2(X)I1o]"

The right hand side is an increasing function of P(O0) so that if it is replaced by zero the

inequality is preserved:

T 
h2

Etg'(X)Oo]"
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The importance of this is that if E[g(X)10oj = 0, a significant penalty is paid. The mean time

between false alarms is now a quadratic function of the threshold instead of an exponential

one.

An upper bound for the expected delay D is computed in the same manner as before

using (17) where now E[g(X)9 1 ] > 0:

D =K/(0,01) = lirn M(O1 )
blO 1 - P(01)

< lim bP(91 ) + [h + -7(8l )][1 - P(81 )]
b10 E[g(X)101 ][1 - P(01)]

lim 1 bP(61 ) h + -y( 01)
bTo E[g(X)10 1 1 - P(01) E[g(X)OIi]

The right hand side is , decreasing function of 'P(0 1) since b < 0. Thus, if we replace P(0o)

by zero the inew-; .ity is preserved and we obtain

h + -y(01)

E[g(X)JOI)

When w(0o) > 0 and w(0 1 ) < 0, we have that as h - oc

_ehw( Oo )
T = At(O, 0o0) >_ -ew(O

E[g(x)lOow(9o )

D = A(O, 1 ) < 
E[g(x)101]

so that the performance measure is lower bounded by

= lo( > ,,(Oo)E[g(x)jo0]. (20)

h-oc D

This lower bound can also be shown to be an approximation to the actual value of Y by

repeating the derivations above using the \Wald approximations [11,44] instead of the bounds

in (16) and (17).

The bound in (20) was derived for E[g(X))o] < 0. However, if E[g(X)Oo] = 0. we

find that the performance measure q is lower bounded by zero. This demonstrates that is
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worthwhile to bias the detector when it is known that before the disorder occurs the detector

output will have zero mean. If the detector is biased to have a negative mean before the

disorder, then the mean time between false alarms will be an exponential function of the

threshold instead of only a quadratic one. Thus, for a fixed mean time between false alarms,

the delay for the biased detector will be on the order of the logarithm of the delay of the

unbiased one. It should be noted, however, that the biased detector will not detect changes

in mean, which, before the biasing, are less than the bias to be applied so that care must

be taken in biasing the test.

Using the results in [21], the bound on the performance measure can easily be extended

to apply to the so called "two-sided Page's test" in which the change in distribution is

either from F(#o) to F(0 1) or from F(0 1 ) to F(OO). For simplicity, we consider only the

ordinary version of Page's test with E[g(X)0o] < 0 < E[g(X)19 1].

2.4 Properties and Examples of the Performance Measure

Define the approximate asymptotic performance measure 7 by

-= Oo)E[g(x)101] (21)

which is also a lower bound to the true value. i has the following desirable properties.

Property 1. is invariant to scale changes in g(x). Let §(x) = cg(x) with c > 0. Then

Z;(o) = w(8o)/c and E[ (x)01] = cE[g(x)j0j]. This is desirable because a scale change can

be absorbed into the threshold and will not affect the performance. U
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Property 2. If g is the log-likelihood ratio, g(z) = log[dF(xaOj)/dF(zj0o)], then the

bound is tight, i.e., q = 7. Lorden [25] proved that for the log-likelihood ratio ,7 = J(01; 0o)

where
I dF(XI01)J(10)= E [logdF(XI} o) 0 ]

00

log dF(xIO1) dF(x I~i)
dF(xj0O)

which is called the discrimination or Kullback-Leibler divergence in information theory.

Since

df(MO I 0 0 f0 dF(x f01)E exp f og dF(X1OO)I I I dF-(xOO) dF(xj0O)

=1,

it follows that w(O) 1. So,

-- E[g(x)l0]

E [log dF(XI0) 01 (22)
dF(XIOo) .(

Property 3. When g is a random walk nonlinearity, 7 = 7: We can find 77 explicitly by

using the closed form solution for the average sample number in (10). Under the assumption

that E[g(z)10o] < 0 and E[g(X)OI] > 0, we have that q(9o) > p(Oo) while p(01) > q(01).

Thus, the mean time between false alarms and the delay are asymptotically
[g(Oo) I

q(00) [qtlo)]J
T = A'(0,0 0 ) ~[q(O) - p(O0) -

D = A(O,0 1) h h

p(0 1) - q(0 1)

as h -. oc. Thus, 17 is given by

log(T) q(Oo) (23)
S= lim o [p(1)- q(91)]log p((o--h--oc D ()
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We have that

E [( ) + (1- p(q o)eo + ,p(Oo)

=1

so

= q(Oo)W(O0 ) =log q(0o---5

This, together with

E[g(X) 01] = p(01) - q(01),

yields the desired result. U

Property 4. i7 = 77 for the Brownian motion analog of the discrete-time Gaussian

case using a continuous-time linear Page's test: Here, we observe the Brownian motion Bt

satisfying the stochastic differential equation

dBt = itdt + vtdwt

where wl is a Wiener process, pt is the drift given by

0o, for t< toPt= 01 , for t > to

with 00 < 0 < 01, and vt is given by

vt c 'o, fort <to
t' 1 , for t > to.

The continuous-time linear Page test is given by the stopping variable U given by

U = inf{u : C, > h)

where C. is related to the observations by

C. = B.- min Bt.
33t<u
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The average sample number U(O,a 2 ) of this test when to = oc is given by [1,41]:

u(°'a) - E[UI°',l)] = { -  
- i h if 0 0.

Thus, the performance measure is

log(T) -20o00
17 = liran = 2

h-0c D C0

This is the continuous-time analog of the discrete-time disorder problem with i.i.d. observa-

tions, X, N(,a2) for i < to, Xi - N(01,a2) for i > to, with Page's test using g(x) = x.

In this case, the moment generating function of X before the disorder is

£[exp{tX}j~o~ao] = exp{Oot + 0,ti2}

so that

(Oo, o)= -20o/0 .

This, and the fact that E[XI0 1;a2] = 01 yields

-20o01
7 2o = "  (24)

Property 5. In [16], Hlinkley derived an asymptotic performance measure for the nonlin-

earity g in an off-line formulation of the disorder problem using the probability of detection

and probability of false alarm as the performance criteria. That measure H is given by

H = log E[exp{,,;(Oo)g(X)O 1}] whereas Tjcan be written as = E(log[exp{,(Oo)g(X)Oj }]).

By Jensen's inequality H > T. M

Using , the bound and approximate value of the performance measure, we can compare

the performance of various nonlinearities in different noise distributions. Thus, we have an
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analytic measure and can avoid the complicated numerical integration discussed in Section

2.2 to generate the performance curves. Figure 4 shows the performance iaeasure q as a

function of SNR for the linear detector, the sign detector, the dead-zone limiter (d = 0.6120r),

and the log-likelihood ratio for Gaussian noise, Laplace noise, and Gauss-Gauss mixture

noise with c = 0.01 and -y2 = 1000. (Note: the results for the log-likelihood ratio for the

Gauss-Gauss mixture could not be obtained numerically). In Figure 4(b) we see that the

performance of the sign detector approaches that of the optimal detector for small SNR's.

This is reminiscent of the result from classical detection theory that the sign detector is

the locally optimal detector for Laplace noise. This will be examined in more detail in the

next section. Figure 4(c) illustrates that the linear detector can perform very poorly for

the Gauss-Gauss mixture where for an SNR of 0 dB the delay for the linear detector will

be more than ten times larger than the delay for the sign detector.

The performance measure of the three detectors for the Gauss-Gauss mixture noise is

shown as a function of c for -y2 = 100 and 1000 in Figure 5. We see that the sign detector

and dead zone limiter can perform much better than the linear detector even though the

linear detector is the optimal detector for ordinary Gaussian noise. We see from Figures

5(a) and 5(b) that the delay using the linear detector can be 100 times larger than the delay

using the sign detector for certain mixture distributions.

The performance measure can be interpreted in two ways. We can use the ratio of two

performance measures to indicate the relative delays for the two situations for a fixed mean

time between false alarms large enough. For example, for small SNR's, Figure 4(b) indicates

that using the linear detector in Laplace noise would result in twice the delay that the sign

detector would have for a large mean time between false alarms. Alternatively, we can use

to convert a large mean time between false alarms to the corresponding delay using the
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Figure 4. The performance measure I as a function of the signal-to-noise ratio for Page's
test implemented with the log-likelihood ratio, the linear detector, the sign detector, or the
dead zone limiter operating in (a) Gaussian noise, (b) Laplace noise, and (c) Gauss-Gauss
mixture noise with c = 0.01 and y2 = 1000.
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definition in (11). To demonstrate how one might use this interpretation of the performance

measure, consider the following situation. Suppose we are observing the symmetric additive

signal in noise disorder problem where the noise distribution is unknown but is assumed to

be a Gauss-Gauss mixture with contamination parameter c in the range (0.05,0.25) and -t2

in the range (100, 1000). The SNR is known to be 0 dB. Independent samples are taken at

a rate of 10 kHz. It is desired to have less than one false alarm per hour, or less than one

false alarm every 3.6 x 107 samples. We note from Figure 5(a) that ; 3 in the range

of interest. The expected delay is upper bounded by log(T)/ which, for this example, is

less than six samples or 600 microseconds. Similarly, for a false alarm rate of one per ten

hours, the expected delay is less than seven samples or 700 microseconds.

2.5 Local Asymptotic Performance

The performance measure T1 is a valid lower bound for all values of the parameters 0o

and 01. Therefore, we investigate its properties in the so-called local or weak signal case.

In addition to when the observations justify a weak signal treatment, the local performance

is also important from a nonparametric viewpoint. Since we may not know the true signal

value in a nonparametric setting, it is hoped that by using a good detector for the weak signal

situation - which will not depend on the signal value - we can achieve good performance

in the non-local situation as well.

Specifically, we consider the symmetric additive signal in noise situation, i.e., F(x Oo) =

FO(x + 6) and F(xtO1) = Fo(x - 0) wherp F0 is some probability distribution and 6 is
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a positive parameter. Let Y be a random variable with distribution FO which admits

the probability density function fo(x). In addition to assuming that E[g(Y - 0)] < 0 <

E[g(Y + 0)] for all 0 in a neighborhood of zero, it is assumed that E[g(Y ± 9)] is continuous

at 0 = 0 so that E[g(Y)] = 0. This implies that

lir = lim ,(-)E[g(Y + 9)] = 0.
0-0 0-0

This would be the case, for example, if fo is an even function and g is an odd function.

Thus, the local performance of Page's test is determined by the first non-zero derivative

with respect to 9 of i. Below, we derive the following key result under general smoothness

and boundedness constraints:

lir d 0 (25)
o-0 dO1

d2  IE_[g,,-____d? ={E ['(Y)]}2
lim =J 4-= 4E. (26)

90dO- E[g2 (Y)] ='I.(6

Here, C is the efficacy of the detector g in the classical detection problem. In the derivation.

we will assume that limits and expectations can be interchanged freely, and similarly for

derivatives and expectations. For a par'ticular function g and distribution F0 these steps can

be verified using the Lebesgue Dominated Convergence Theorem (see [16] for an example

where F0 is in an exponential family). We will further assume that all random variables

considered are integrable, that is, the expectation exists and is finite. Again, whether this

is true in a particular instance would need to bc verified.

In deriving (25) and (26), we consider two cases: when g(x) is the log-likelihood ratio

and when g(x) is a general nonlinearity which does not depend on 9. In the former case,

we have from (22)
fo(Y) '

=E{j(Y+O)} = E log M(Y+20)5 ,  (27)

40



which is zero for 0 = 0. Under suitable regularity conditions, (27) can be differentiated with

respect to 0 yielding

e-o -o [ fo(Y + 20) J 0

and this is zero because it is the derivative with respect to s at s = 0 of the identity

I fo(y + s)dy = 1. (28)

Similarly, differentiating (27) twice with respect to 0 and taking the limit yields

d2 
- 00 0 A fc(Y) 2

lim ~ = -4 f.'(y)dy + 4 fo(y) I-- dy.
-0, -00

The first term can be seen to be zero by differentiating the identity (28) twice with respect

to s and setting s = 0, while the second term is four times the efficacy of the log-likelihood

ratio, which coincides with Fisher's Information for the distribution F0 .

When g(x) is a general nonlinearity which does not depend on 0, it is assumed that

w(-0) -- 0 as 0 - 0. This is reasonable since the moment generating function M(t) =

E[exp{tg(Y - 0))] is a convex function of t with M(t = 0) = 1 and whose slope at t = 0

is equal to E{g(Y - 0)), which we assume increases to zero as 0 increases to zero. Since

w(-0) -* 0, the local performance of Page's detector is determined by the first non-zero

derivative of with respect to 0 at 0 = 0.

We have that = w(-O)E{g(Y + 0)) which is differentiated to yield, under suitable

regularity conditions,

= E{9 (Y + 0)}d(-O) + w(-o)E[g'(Y + 0)]. (29)

Since E[g(Y)] = 0 and limel0 w(-O) = 0,

d
010 ( 1ia ~ O
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Differentiating (29) again yields

d2,7 = d2[-(-o)]E[(g( + 0)] + d[w,(-O)]E[g'(Y + 0)]
d.

+ Nt. -o)]E[g'(" + 0)] + w(-O)E[g"(Y + 6)]

Therefore, we have that

d2 d
lim = 2 r w(-0)]E[g'(Y)]. (30)
010 dO- olo dO

Next, the identity 1 = E [exp{w(-6)g(Y - 0)}] is differentiated twice with respect to 0 and

the limit is taken, resulting in

d d
0 = E{g 2 (Y)) urn - 2E{g'(Y)} lim TW(-6).

This is solved yielding

lim O = 2 E~lYl or Urn d-L(-6) = 0. (1
e- OE{y 2(1')} e-o dO

When the first relationship in (31) holds, (26) follows from (30).

The validity of these results is demonstrated in the following examples.

Example 1. When Page's test is implemented with the dead zone limiter, is given by

(23)
~ q(9 o)

1= r= [p(Ol) q(01 )]log q-00 ) •

We also assumed unbiasedness of the detector in the noise-only situation implying that

p(O) - q(0) = 0. Since p(O) and q(O) are given by

p(O) = 1 - Fo(d - 6)

q(O) = Fo(-d - 6)

the unbiasedness condition implies

Fo(-d) = 1- Fo(d)
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where [-d,d) is the dead zone. Computing gg yields

d (dr-0 o- ) o FO(-d+ 0)1

+ [1 Fad -9- F(-d-)] fo(-d + 9) + fo(d + 0)1
+ [ -Fod 0 -Fo-d- A FO(-d+ 0) 1 -Fo(d + 9)]

which is zero for 9 = 0 because of the unbiasedness condition. Computing the second

derivative of iresults in

d2[ Fa(-d+ 0)1

d,, [-f'(d - 0) - fo(-d-) 1 1 - Fo(d+9)]1
+ [fo(d - )fo(d - 0)][o(d +1 fo(d + 9)]

4 Fo(-d +) 01 1-f(d +)
+ [fo(d-90) +fo(-d - 0L fo(-d +90) +-f~d+0

I O(d + fo-) 1- Fo(d + 9)
+ [1 - F(d- 0) - F(-d-9 - d f(d O + I)

d)70 LFo(-d+9) 1Fo(d +9)j

For 9 = 0, this reduces to

d2 j 2[fo(d) + o

dO"'0=0 I -Fo(d)

When the noise has a symmetric density, this becomes

d2, 8[fo(d)]2

d9- Lo0 - 1 - Fo(d)

which is four times the efficacy [20].U

Example 2. For Page's test implemented with the linearity g(x) x , i s given by

(24), i~=202/a2. The first derivative is U9= 49/a2 which is zero at 0 = 0. The second

derivative is a constant, 7i7 = 4/u'), which is four times the efficacy of the linear detector

in Gaussian noise [19]. U

The fact that the performance measure is zero when there is no signal is expected and

this implies that performance is poor for signal values near zero. The significance of the

43



fact that the first derivative of the performance measure is lso zero at 0 = 0 is that the

rate of improvement in performance is also poor for small signal levels. The importance of

the second result relating the second derivative of the performance measure at 6 = 0 to the

efficacy is that the wealth of results on the performance of detectors with cumulative sum

test statistics in the classical hypotheses testing problem for detecting a weak additive signal

in noise can be transfered to the weak signal performance of Page's test. For example, it is

known that the so-called locally optimal nonlinearity g(x) = -f (z)/fO(x) maximizes the

efficacy in the classical detection problem. Therefore, it also maximizes the performance of

Page's test in the small signal case.

2.6 Conclusion

In this chapter we have described a method to obtain the performance curves for Page's

test with arbitrary nonlinearities. Perhaps more importantly, an asymptotic measure with a

simple analytic formula was derived which can be useful in comparing different noninearities

for a variety of noises in the desirable situation of a large mean time between false alarms.

By using the Gaussian-Gaussian mixture family it was shown that the sign-based Page's

test can outperform the linear Page's test for a wide range of distributions, which is a

robustness property of value in nonparametric situations. Finally, by examining the local

performance of Page's test, it was found that the performance is directly related to the

efficacy of the classical binary hypothesis testing situation. Thus, the wealth of results

on using memoryless nonlinearities in classical detection theory can be transferred to the

quickest detection problem using Page's test.
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3-

The Application of Page's Test

to

Transient Signal Detection

3.1 Introduction

The problem of detecting unknown transient signals is an especially difficult one. The

complications arise because of the presence of several unknown parameters which force the

use of suboptimal detectors. These unknowns include the transient signal waveform and its

amplitude, the duration of the transient, and the arrival time.

Several approaches have been taken for this problem. In [23], Wolcin derives a detector,

robust for the transient signal waveform, and implements it sequentially to allow for arbi-

trary arrival times. Friedlander and Porat [7] use the Gabor representation to decompose

a received waveform into a two-dimensional set of coefficients, one coordinate representing

the complex frequency of a decaying sinusoid and the other representing the arrival time of

the same signal. This approach is investigated in Chapter 4. Other work in transient signal

detection and estimation can be found in [8,11,15,18], and an extensive bibliography can be
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found in [12].

In this chapter, we consider a new approach which uses Page's test to detect transients.

Although this test has been used in the related area of signal segmentation in conjunction

with speech signals [2], the majority of the literature evaluates the test in the context of the

disorder problem [3,5,17] as was done in Chapter 2. A disorder differs from a transient in

that once the disorder occurs the change remains for all time, whereas a transient is usually

thought of as having a finite duration. In the disorder problem, it has been shown that

Page's test implementing the log-likelihood ratio nonlinearity is the quickest detector of the

disorder [13.16]. Specifically, for a lower bounded mean time between false alarms, Page's

test minimizes the worst case expected delay in detection once the disorder occurs.

The rationale for using Page's test to detect transient signals follows from the fact that it

is the quickest detector for the disorder problem. Since the test detects the change as quickly

as possible, once the detection occurs it is irrelevant that the disorder continues forever -

it could just as well have been a transient that ended at the instant after the detection.

Conversely, if another detector performed better for transients, one would suspect that it

would be quicker than Page's test for the disorder problem, as well. However, one should be

cautioned not to deduce that the optimality of Page's test for the disorder problem carries

over to the transient problem. This can be understood by considering those realizations

in the disorder problem which correspond to delays in detection larger than the duration

of the transient. In such situations, the disorder is detected with some delay whereas the

transient is not detected at all.

Another factor to consider in the question of the optimality of Page's test for transient

signal detection is the problem of unknown parameters. Page's test is known to be the
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quickest detector when the log-likelihood ratio is implemented in the test and the obser-

vations are independent and identically distributed (i.i.d.) with one distribution before the

disorder and a second distribution after the disorder [13,16]. However, in the transient

signal case, the i.i.d. assumptions may not hold, and even if they did, the distribution of

the transient samples including all the parameters such as amplitude will not be known a

priori. Thus, a suboptimal Page's test would have to be implemented, and other detection

schemes might perform better. Despite these concerns about Page's test, the test does seem

useful for detecting a change which occurs at an unknown time. Thus, the evaluation of the

performance of Page's test for transient signal detection will be one of the major focuses of

this chapter. In order to judge the performance of Page's test, several other tests found in

the literature are also evaluated for the detection of transients. Previously, these tests had

not been evaluated for transient signal detection in a sequential data processing framework.

The chapter is organized as follows. The use of Page's test for transient signal detection

is justified in Section 2 by deriving a sequential algorithm to determine the maximum

likelihood estimates of the starting and ending times of transients. Approximate methods

of evaluating the performance of Page's test for transient signals are presented in Section

3. In Section 4 the performance is evaluated for the specific case of detecting a transient

signal from observations of the sample energy spectral density. Alternatives to Page's test

are presented in Section 5. Calculated and simulated results are discussed in Section 6 and

conclusions are presented in Section 7.
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3.2 Maximum Likelihood Estimation for Transients

In Chapter 2, Page's test was shown to be a sequential implementation of a maximum

likelihood detector under the assumption that the change in the underlying process can

be modeled as a disorder process. However, Page's test has only been considered when

it is assumed that once the disorder occurs, the new probabilistic model remains for all

time thereafter [eg. 1,5,17]. This is obviously not the case for transients, for although they

occur abruptly at an unknown time, they also disappear (or fade away) at some later time.

By deriving the maximum likelihood estimates for the starting and ending times of the

transient, we will show that the resulting detector also implements Page's test.

We assume the simplest possible model for the transient signal in noise. Let the tran-

sient begin at time to and end at time tj. Before to and after tl, the noise is modeled

by an ii.d. random process with distribution Fo. During the transient, the signal together

with the noise is modeled by an i.i.d. random sequence with distribution Fl. Thus, if

X 1, X 2 .... X N is the fixed set of observations, then the situation is as follows:

X,, , i.i.d. F0 , 1 < n < to

Xn , i.i.d. F1, to < n < tj

Xn , i.d. F0 , t1 < n < N

The maximum likelihood estimates of to and tj are given by

fto-1 it Nto,I I =arg max logfo(Xn)+ L log h(Xn)+ E logfoX.)
to,tt I n=l n=to n=1+1J

= arg max log' _t~(Xn) N Xn)to,tl o (Yn" + L - log fo( )•

We now consider the maximization of the likelihood function as indicated above, that is

max o logh ( X . )

<o_ N 
0(--
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ignoring the term which does not depend on the transient epochs. In the maximization of

(1), we include the case that the sum contains no terms, which corresponds to the situation

in which no transient is present. For this case, the sum is by definition equal to zero, and,

therefore, the maximum in (1) is nonnegative. Thus, we compute

I t<t f o( Xn)

where (.)+ = max{O, 9}. We dirive a sequential algorithm for performing the maximization

and show that it is, indeed, an implementation of Page's test. Assume the maximum has

been computed for N = n, and let -, be that maximum which is given by

'in = max max log f(X )

I< < n I < o il fI( "

91: 90 Mt o(r

The maximum for N = n + 1, -t,+, can be computed from

Yn+l = max max log f(XM))
1<tl:n or tl=n+l 1to f(Xm

Mtf (XM)

=max max :Smax El fi(X-- ,max logf(Xa
t<jl_ lto tl 0 lo lm) 1'<to+1n+l -og f0(X,

Let 6, and An be given by

,n max (og l( )

fo(Xn)

so that

bn+X = (bn + An) + -

From (2) it is clear that

Ytn+l = max { Yn, bn+ 0
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so that the sequential algorithm for computing the maximum of the likelihood function is:

'So = 0

7Y0 = 0

= log f, (X.)
fo(X.)

b5n = max{0, 54 1 + \n) n = 1, 2,. .. , N

In = max{Yn -I1i, bn}.

The statistic In is an indication of the likelihood of a transient signal of some length in the

interval [1, n] - the larger the statistic, the more likely a transient is present. A reasonable

detection scheme would then be

In h > Declare Transient Signal Present (3)
< * Continue, n = n + 1.

Note that bn is identical to Page's statistic S,1 in (2.3), and that -y. can be rewritten

Irn = max 16o,1 .... - , b,)}.

This implies that the test (3) is equivalent to Page's test (2.4).

By not integrating over the observations which have a greater probability of containing

only noise than noise plus signal, Page's test has desirable "windowing" properties which are

suited for detection problems when events occur at unknown times. The effect of resetting

Page's statistic to zero instead of allowing it to fall below zero is to forget all of the past

observations. In such a situation the past is not relevant because it becomes more likely

that a transient has not yet occurred. This resetting has the effect of windowing the data

so that the noise-only observations before the transient occur are ignored. A detection will

then occur if the signal duration and/or signal-to-noise ratio are large enough so that the

test statistic exceeds the threshold.
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3.3 Performance

We would like to determine the performance of the proposed test. To do so, we be-

gin by evaluating the performance for the disorder problem where the quickest detection

performance criteria are relevant. These criteria are the mean time between false alarms

and the expected delay. Then, using these results, we relate performance in the disorder

problem to performance in the transient problem. The mean time between false alarms

is easily related to the false alarm rate, but the same can not be said for the expected

delay and the probability of detection. Several approaches will be given to determine the

probability of detection and relate it to the performance measures developed for quickest

detection procedures.

For convenience, we pararmeterize the distributions according to F0 = F(0) and F1 -

F(8 1). From Chapter 2, the mean time between false alarms T can be lower bounded by

the Lorden bound (2.18)

T > exp{w(8o)h} (4)

where w(O) is the unique non-zero root (which is assumed to exist) of the moment gener-

ating function identity

E[exp{wg(X)}O] = 1 (5)

for the nonlinearity g. Also, using the Wald approximations we have that

T (z 1 [1 - exp{h (0O)} + h] . ,6)r E~q(X)0] I U00) I

The false alarm rate a is related to the mean time between false alarms by the straightfor-

ward relation

(7)
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which has units "false alarms per sample Xi" ( note: Xi can represent one random variable

or a vector of random variables). Because we use a one-sided sequential algorithm, we avoid

the confusing terminology "the probability of false alarm" which is used for fixed sample

size tests. Indeed, in a sequential test such as ours the probability of false alarm is exactly

one because, if no disorder occurs, the test will terminate at the boundary h if one waits

long enough. The critical information, however, is the mean time between false alarms or

equivalently the false alarm rate. The worst case expected delay can be upper bounded by

(2.19)

D < [h +(0 1E[g(X)I01 1' (8)

or, by ignoring the excess over the boundary, we have that

h

D w.. E[g(X)I91]  (9)

In Chapter 2 it was shown that an appropriate performance measure for Page's test is the

reciprocal of the asymptotic slope of the performance curve indicating D versus log(T) as

T - oc. This measure, 7, is lower bounded and approximated by i given by (2.21)

w(Oo)E[g(X)O ] < q = lim log(T)(10)
T-oo D

The expected delay and the performance measure are valuable criteria for the disorder

problem, but how can they be related to the probability of detection for the transient

problem? Indeed, in the disorder problem the probability of detection is exactly one because

it would eventually exceed the threshold if allowed to run long enough. This is obviously

not meaningful in the transient situation where a change occurs only for a short time.

Some simple bounds on the probability of detection of the transient can be obtained

by applying Markov's inequality on the positive integer-valued random variable L. As
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mentioned above, the worst case expected delay can be calculated by

D = E[LI01, So - 0].

Since

(n + 1)'{L>n} <L

where IA is the indicator random variable of the measurable set A, it follows that

'{L > n101,So =0} < E[LI0,So = D (11)
n+l n+1

Let r be the integer-valued duration of the transient and let 0 be the probability of detecting

the transient. A detection will be defined as a test which terminates during the life of the

transient. Thus, a test which terminates on the sample after the transient is over will be

considered a false alarm and not a detection. This is done to avoid ambiguities and the

question of until how long after the transient has ceased should "detections" be attributed

to the transient. The probability of detection is a function of the state of the cumulative

sum statistic at the moment before the transient occurs so that

0 = O(z) = P{L < rOi,So = z > 01.

/3 is lower bounded by the worst case scenario in which So = 0 so that (11) can be used to

find

/3 >_ P{L < r1O,So = 0}

> (12)
7+1

This formula is useful if the expected delay is small in comparison with the transient du-

ration, and it also illustrates the obvious fact that for the disorder problem, where r = oC,

the probability of detection is one when the expected delay D is finite. Using (8) and (10),

we have that

D< log ol h +101)
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which can be substituted into (12) to lower bound the receiver operating characteristic, or,

for large D,
r + 1 + --:--

> + 1 (13)

When the expected delay is large, asymptotic results on the distribution of the run

length can be used to obtain an approximation to the probability of detection. Set A =

E[g(X)JOI] and C2 - Var[g(X)J0 1 ]. The asymptotic distribution of the run length under

F(01 ) is as follows [10]

(L - N(o,1)

as h - oo, where N(a,b) is the Gaussian distribution with mean a and variance b. Using

the asymptotic distribution, the probability of detection can be approximated by

-V{-r < 4D (r- h1A (14)

where t(-) is the Gaussian cumulative distribution function,

4b(x) = *7= J 1/~z
-00

As done above, substitutions can be made for h and p with a, D, and to obtain additional

relationships from (14).

The most useful approximation can be obtained by using the well known result [6] that

Sn has the same distribution as AIM, where

Mn = max{0, Si S2, ... ,S,},

and where Sn and SI,S2... S S, are related through (2.1) and (2.3). Again, we assume the

worst case formulation and shift the time axis so that the transient occurs at time n = 1
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and that So = S0 = 0. Then the actual probability of detection is lower bounded by

I_ P §. > h for some n = 1,2,... ,r}

> P{S > h}

= P{M, > h}

=P{S. >h forsome n= 1,2,...,7) (15)

> Pf{Sr > h}. (16)

The lower bound has been reduced several times, but the resulting lower bound is both

simple and, as we will see later, quite useful. The threshold h can be upper bounded by

h < I log 01
W (60)'

so that the receiver operating characteristic is lower bounded by

,3> P {Sr > Ilogal}.

The probability (16) can be computed explicitly in certain cases. For example, when

X 1 , X 2,... are Gaussian random variables then so is Sr and the probability is easily com-

puted. Also, even when the distribution of the sum of the underlying random variables can

not be found explicitly, the probability can be approximated for large T using the Central

Limit Theorem.

Another approximation can be obtained by modeling the cumulative sum statistic by

a Brownian motion in continuous time. Let W(t) be a Wiener process, h(t) = a + bt for

a > 0 and b < 0, and define a stopping variable T(h) by

T(h) = inf{t > OIW(t) > h(t)}.

The distribution of T(h) is known to be [13]

PfT~) <U) a ex (a +bt)2 dt."P{T(h)' < u} =1 7 = 3 exp 2tdI

0
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Using (15), we have that

S PT(h)

where T(h) is defined by

t(h) = inf{t > 01S, > h}.

Now, since E[Sn] = ny and Var[Sn] = n-7 , we make the identifications:

Sn - nil4# Wt
S. - ng

h n u - a + bt.

Thus, the probability of detection is approximately

+ _h xp 2t. dt.

0

One would expect this approximation to be better when the i.i.d. summands forming S,

are Gaussian random variables or when r is large.

In this section, we have developed a number of bounds on the false alarm rate and

probability of detection when Page's test is used for transient signal detection. Some i

these bounds are derived from and related to the quickest detection performance criteria

for the disorder problem. In particular, the simple bounds in (4) and (16) will be used in

conjunction with the Monte Carlo simulations in Section 6.
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3.4 Page's Test Applied to the Energy Spectral Density

We are interested in detecting transient signals using the sample energy spectral density

(ESD) as the observations. In this regard, we are motivated by the work of Wolcin [23].

A detailed description of his method is given in the Appendix, and. in the simulations in

Section 6, that method will be compared with the one we develop here.

When no transients are present, so that we are in the noise only situation, we assume

that the background noise is white Gaussian noise (WGN). We assume that the energy

spectral density is white merely for analytical convenience. For a colored spectrum, ihe

approach of Wolcin [231 is to generate an unbiased estimate of the true spectrum and to

use this to whiten (ie., normalize) the spectrum. The same approach can be used here so

that we make the ideal assumption that the spectrum is white. The Gaussian observations

are grouped in blocks of N points for processing via the Discrete Fourier Transform (DFT).

The squared magnitudes of the N complex outputs of the DFT are computed, and these

statistics are available for the detection procedire. These random variables will be denoted

by {Xi.}, i = 1,2,..., n = 1,2,... ,N where i is the block number and n is the frequency

bin number.

The nonparametric spectral estimator described above is called the Periodogram spec-

tral estimator and is widely used because of its simplicity. In [1,22], a more complicated

nonparametric spectral estimator based on the theory of evolutionary spectra due to Priestly

[19,20] is used in conjunction with Page's test to detect an abrupt change in the spectrum of

a piecewise stationary process. However, the performance of these tests were not evaluated

in the context of transient detection. In [4], an autoregressive moving average model is

assumed for the data but no evaluation of detection performance is given.
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Under the white Gaussian noise assumption, the random variables {Xin } will be in-

dependent and identically distributed with the exponential distribution and unity mean.

(Note: this ignores the fact that the distribution of the first and last frequency bins will

actually have the X2 distribution with a variance twice that of tie other bins [20], or it can

be assumed that those two frequency bins are not used.) Thus, each sample ESD will be

independent of the others and will have a probability density pn given by

NN
Pn(xwoi-z12i-. .tN) = 17 exp{-xin} = exp Z i

n=1 I n=Il

for Xin > 0.

The transient signal we are attempting to detect begins at the unknown block to and

continues through the block tj. As in [23], we make the following ideal assumptions about

the sample ESD obtained when the transient is present: 1) the random variables correspond-

ing to different frequency bins are mutually independent, and 2) the sample ESD's corre-

sponding to different time blocks are mutually independent, as well. The distribution of an

ESD sample with a transient signal present (in addition to the WGN) will also be assumed

to be exponential but now with a mean p which is greater than one, fM(z) = 'u- exp( - z/p)

for x > 0. This would be the case, for example, when the transient signal is also a Gaussian

random proress which is independent of the background noise process. The probability

density ps of the spectral samples for block i for to < i < tL can now be written

pX. 1 X,2 ..... , ) = I- -- exp{-xj./p,} = exp - Xihu,, + 1og9in (17)

n=l Pn=l I

foi i, > 0. Here, pi n 1 with strict inequality if the transient signal is present in bin

(i, n). This model is as general as Wolcin's in allowing for different power levels {p,} in

each time/frequency bin.

Because the parameters {p,,} are not known a priori and because the distribution of
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the i'th ESD need not be identical with the j'th ESD for to < i,j S_ tj, Page's test using

the optimal nonlinearity, the log-likelihood ratio, can not be implemented. If, on the other

hand, the {Iin} were known and did not depend on i so that Ai,n = An for to < i < tI, then

Page's test would be

<h Declare Transient Signal Present
< Continue, i = i + 1

where
Si = max{O, Si-I + 9(Xil,X 2 ,.. .XN)

S = 0

and g is the log-likelihood ratio

g(Xi,,Xi2 ,...- , XiN) = n - log/Ain] (18)
n=1 I An

This nonlinearity g can not be implemented in this situation because the parameters {In}

are not known. Many nonlinearities can be considered instead [see Appendix for example],

but we will investigate the following linear "nonlinearity"

N

9(X 1 .Xi2, XiN) = L [Xn - 1 - b] (19)

n=1

where 6 is a parameter which is strictly positive. The linearity x - 1 is the locally opti-

mal nonlinearity for testing between the hypotheses "A = I" and "A' > 1" for univariate

exponential distributions as shown below:

gio(z) = Er lo l=g I* )

j dAt fw(xjui=1

= lim dlAlexp{z// ]}
Alil, d-Ilg exp{-z}

d
= lim - -{-log P 1 - z/I 1 + }

pi dp

= lim z/Plf - 1//i
pill

=-z -1.

Moreover, this nonlinearity is uniformly most powerful for all A > 1 in the same univariate

hypothesis testing problem. In the multipar;.meter/multiva~iate case using the ESD. the
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linearity given will not be the kl,,,.lly optimal detector because that nonlinearity requires

taking the gradient in the signal direction aa.l will result in uneven weighting of the fre-

quency bins. This can not be done here because the {#in} are not known. Also, in the

multiparameter case in the present context, there is no uniformly most powerful test to

decide between #in = 1, n = 1,2,... ,N and p,, > 1, n = 1,2,...,N. Despite these draw-

backs, the linear function in (19) which implements an energy detection scheme should be a

good test for our situation as it preserves the general structure of the optimal nonlinearity.

If i, = i for to < i < t1 and 1 < n < N, then we could r,:ke the identification from (18)

and (19)

1+ -- b log M. (20)

In addition to the fact that the right hand side of (20) is strictly greater than one for p 1,

the parameter 6 is important because, as shown in Chapter 2, Page's test performs much

better when the mean of the nonlinearity before the disorder takes place is negative as

opposed to zero.

The false alarm rate of Page's test implemented with the nonlinearity in (19) is deter-

mined by the parameters h and 6. Because we have two degrees of freedom, there are many

(h, 6) pairs that will yield the same false alarm rate and so one should also consider how

a particular pair will affect the detectability of transients. The determination oi the false

alarm rate for a given pair (h,6) does not depend on the transient but only on the noise

disctribution. In order to obtain the Lorden bound (4) and the Wald approximation (6) to

the mean time between false alarms or equivalently the false alarm rate, it is necpssary to

find the root w of the moment generating function identity (5)

1 = E [exp {,,;g(X, Xi2 ... ,XiN)} Win = 1, n = 1, 2,..... N)

= E exp w [Xn- 1-.6]} n = 1, = 2 ..... N"
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N
= JI E[expf{w(Xi.- 1- 6)} Ipirn = 11

n=1

= (E [exp {w (Xin - 1 - 6)} Ijin = 11) N

= ( 1 1 W exp{-w(l + b)}) (21).

Note that the root w does not depend on N. (This fact may be a little surprising at first

glance. One would expect that the cumulative sum would become more and more Gaussian

as N increased due to the Central Limit Theorem and that the root W(N) would tend to

the root for the Gaussian distribution, which is WGau. s = 26, as N -- oc. The fallacy in

this argument arises because the sum of the N random variables is not normalized by vW"

which would permit using the arguments that lead to the Central Limit Theorem.) After

solving (21) for w (take N = 1), equations (4)-(7) can be used to bound and approximate

the false alarm rate.

Alternatively, one may be given the false alarm rate a and a minimum value pl of pi,

for which one may wish to test. The nonlinearity (19) implements the log-likelihood ratio

when the identification (20) is made with p = ul and when the threshold h' used with the

log-likelihood ratio is related to the threshold h used with (19) through

h = Al h'. (22)
A - 1

Then, since the root of the moment generating function identity for the log-likelihood ratio

is identically equal to one, it follows that a < - log h'. Now, (22) can be used to find h and

(20) can be used to find 6.

It is intractable to analytically evaluate the probability of detecting a transient when

the transient energy can be arbitrarily distributed in the time/frequency bins. Thus, we

evaluate the performance of Page's test for the following specific transient structure. For

each of the blocks during the duration T of the transient from to through t, it is assumed
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that exactly M out of the N bins will have transient energy, and each of the M bins will

have pi, = p* for to < <t t.

The signal-to--noise ratio S = - 1 required per bin to achieve a given performance

measure i is found from (10) and (19) to be

S-= 1[- +N6 .(23)

It is clear from (23) that the value of 6 which minimizes the SNR does not depend on M.

Using the lower bound to the probability of detection in (16) we have that

> P{S > h}

E E [Xm, - 1-6b]> h} (24)

Since typical values of N are 64, 256, and 1024, the product rN will be large enough to

justify using the Central Limit Theorem to compute the probability in (24). The mean and

variance of S, are calculated from the mean and variance of the exponential distribution

yielding
E[S,. = rM(p" - 1) - rNb

Var[S,.] = rMp*2 -: r(N - Al).
Thus, the bound becomes

/h 1-$ (h - -1) +rN)

The signal-to-noise ratio S =u - 1 required for at least 50% detectability is easily found

to be

S < +rN (25)
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3.5 Alternatives to Page's Test

The performance of Page's test with the linear "nonlinearity" will be compared to

several other procedures. The three other tests that will be considered are the "K block

sliding window test," Wolcin's test, and Lorden's Test.

The "K block sample sliding window test" has been called the "two models" approach

in connection with the disorder problem [4] (the second "model" which is not explicitly

implemented for this detector is used to estimate the background spectrum which is assumed

known here.) For the present application, a fixed sample size test statistic T/' based on the

most recent K blocks of N-point DFT's, blocks i through i + K - 1, is computed according

to
i+h-1 N

T. K = E E (Xi, -1) (26)
k=i nt=1

and is compared to a threshold h0 . The test is implemented sequentially for each new block

computed by incrementing i in (26) which amounts to using the new DFT and throwing

away the least recent DFT. The parameter K is the window length. While the probability

of false alarm is easy to calculate for the fixed sample size test, it is not clear how to

compute the false alarm rate for the sequential test. An approach to compute the false

alarm rate might be to find the expected hitting time of a threshold by a moving average

process. However, results of this type have not been found in the literature. For transients

with a duration r with r < K, the Central Limit Theorem can be used to lower bound the

probability of detection,

and the SNR So required for 50% detectability is

h0
So = U* - 1 < ho (27)
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Upon comparing this with the equivalent expression for Page's test (25), we note there is

a penalty associated with Page's test due to the additional term involving 6. However,

the threshold for Page's test may be significantly lower than the threshold for the sliding

window test for a given false alarm rate.

Wolcin's test is described in detail in the Appendix, but the relevant points are included

here. For the energy detection scheme, Wolcin's test computes the following K test statistics

Wk for k = 1,2,... K from the most recent K DFT's, numbered i - K + 1 through i,

*I i N
W (X-1). (28)

j=i-k+l n=1

For each i, the K statistics in (28) are compared to a single threshold h, and if any exceeds

the threshold, a detection is declared. Essentially, the statistics in (28) are used to detect

a transient of any possible length from one to K. In some sense, the sliding window test

is a poor-man's implementation of Wolcin's test although this is not meant to imply that

Wolcin's test is necessarily better than the sliding window test. For i fixed in (28), it is not

clear how to compute the probability of false alarm with this multiple-hypothesis/multiple-

statistic formulation. No analytical expression could be found for the false alarm rate for

the sequential implementation of the test either. Using the Central Limit Theorem, the

probability of detection of a transient of length r with r < K can be lower bounded by

13 0( h( -1VM(*- l) )>1- I,, ;;-+ (N - M)/

The SNR S, required for 50% detectability is given by

S1 = - < h (29)

A procedure due to Lorden [13] which extends Page's test so as to test a simple hy-

pothesis against a composite alternative warrants investigation. Specifically, in the disorder
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problem, let F0 be the distribution of the i.i.d. observations before the disorder. Let e pa-

rameterize an exponential (Koopman-Darmois) family distribution F9 which includes F0 .

Once the disorder takes place, the i.i.d. observations are drawn from the distribution

dF9(y) = exp (Oy - b(O)) dFo(y)

for some 0 > 01 and where b(O) = 0. Let N be the following stopping variable:

N = inf{n : sup (Sn - nb(O)) > h2 > 0}, (30)

where Sn is the cumulative sum of the observations, Sn = Y1 + "'" + Yn. Let N* be the

extended stopping variable given by

N* = min {Nk + k - 1Q (31)
k>1

where Nk is N applied to Yk,Yk+1,.... The false alarm rate of the extended stopping rule

is easily shown to be upper bounded by

a < exp{-h}. (32)

Also, this procedure is optimal in the quickest detection sense asymptotically as h - c

for all 0 > 61. This is analogous to a uniformly most powerful test in a binary hypothesis

testing problem.

The following comments are in order before using this test to detect transients from

the energy spectral density. First, the optimality of the test is only in tl'e asymptotic case

whereas the optimality of Page's test in the disorder problem has been established in the

non-asymptotic case as well [16]. Second, the result applies only to a single parameter ex-

ponential family distribution - this is analogous to the fact that uniformly most powerful

tests exist for the single parameter exponential family distribution but not for the multipa-

rameter distribution. Clearly, when a transient is present, the ESD has a multiparameter
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exponential family distribution (17). Finally, the implementation of the test (30) requires

considerably more computation and memory than any of the other tests (see [13] for details

on the implementation).

Since this procedure tests for a composite alternative, one would hope that it would

be robust for transients with unknown amplitude. Also, as for Page's test, the false alarm

rate depends only on the null distribution of the test statistic. For the ESD, the null

distribution of the test statistic has a single parameter exponential family distribution since

the observations K, i = 1,2,..., correspond to jN I X i , i = 1,2,... which have the

Erlang-N distribution,

, y N- exp{-y}
- (N - 1)!

for y > 0. Thus the bound (32) on the false alarm rate holds. Unfortunately, no simple

bounds on the probability of detection have been obtained.

Finally, procedures which implement more than one test in parallel, such as several

Page's tests in parallel or a parallel combination of Page's test and Wolcin's test, could be

studied, but they will not be considered here.

70



3.6 Results

In Figure 1, the root of the moment generating function identity is plotted as a function

of 6 as given by (21). As is evident from (21), the root is bounded by W < 1. Since

a < exp{-wh}, larger values of w are desired but this goal is in opposition to having lower

values of b to have lower required SNR through (25).

Figure 2 shows the SNR required per bin for Page's test to achieve performance measures

of i = 0.1, 1, and 10 as a function of the number of bins A with transient signal energy

present out of N = 64 and N = 1024 bins as given by (23). Recall, is a lower bound

for the ratio (log T)/D asymptotically as the mean time between false alarms T tends to

infinity. Consequently, a larger corresponds to a smaller delay D in detecting the disorder

or transient. The values of 6 used were chosen to minimize the required SNR per bin. These

graphs are easily interpreted for the disorder problem as we now demonstrate. Say we want

to lower bound the mean time between false alarms by T > 108 blocks of 64 samples each.

Then, using (10) we see that for i = 0.1, the expected worst case delay is given by D - 184.2

blocks; for i = 1, D ,z 18.4 blocks; for = 10, D ; 1.8 blocks. The relations (12)-(14) can

be used to yield bounds on the probability of detection of transients. For example, for large

D, (14) can be used to show that transients of length D will be detected with approximately

50% probability assuming the required SNR per bin as indicated in the figure is available.

The false alarm rates of the various tests are plotted versus the threshold in Figure 3 for

N = 64 and N = 1024. Monte Carlo simulations were used to compute the false alarm rate

for Page's test with 6 = 0.1 for N = 64 and with 6 = 0.05 for N = 1024. The corresponding

Lorden upper bounds (4) and Wald approximations (6) are also shown. The values of 6

were not chosen in any particular optimal fashion but the general guiding principle was to
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Figure 1. The root of the moment generating function identity given by equation (21) as
a function of 6.
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Figure 2. The signal-to-noise ratio required per bin for Page's test to achieve the indicated

preformance as a function of the number of bins Al with transient signal energy present
out of (a) N = 64 and (b) N = 1024 bins.

73



100

LL 10.1

0) 1 0-2 Page's Test Sliding Window Test

E Wolcin's Test

_D 10-3Wald Approximation
LA. For Page's Test

A Lorden Bound for Page's Test

10 .1
0 20 40 60 80 100

Threshold

(a)

1 00

E

7; 10-2
cc 4- Sliding Window

E Test
5 -4-Wolcins Test<Lorden's BoundFo

2~ 10-.3 Page's Test
U. Page's Test

Wald Approximation
1 o~For Page's Test

0 100 200 300 400

Threshold

(b)

Figure 3. The false alarm rates of the tests considered as a function of the threshold for
a DFT of length (a) N = 64 and (b) N = 1024.

74



lower the detection threshold by choosing a larger 6 while attempting to minimize the effect

that a larger 6 has on the required SNR. Simulations were also run to determine the false

alarm rate for the K-block sliding window test and Wolcin's test. The window size for both

of these tests was chosen to be K = 16 for N = 64 and K = 8 for N = 1024. The upper

bound for the false alarm rate for Lorden's test given by a _< exp(-h) is not shown and no

simulations were performed.

The SNR required per bin for 50% detectability as a function of the number of bins

with transient signal energy present, M, out of N = 64 and N = 1024 bins is shown in

Figures 4 and 5, respectively. The false alarm rate was set at a = 0.001 false alarms per

DFT, and, with the exception of Lorden's test, the thresholds were determined from the

Monte Carlo simulations dep*cted in Figure 3. For Lorden's test, the threshold was set

using the upper bound (32), and the value of 01 in (30) was chosen to correspond to a

signal-to-noise ratio of -20 dB. The results are shown for transients of length 1 < r < 32

when N = 64 and for 1 < 7 < 16 when N = 1024. The upper bounds for Page's test (25),

the sliding window test (27), and Wolcin's test (29) are shown together with the results

of Monte Carlo simulations performed for all four tests. The simulations show that Page's

test, Wolcin's test, and Lorden's test can be significantly better than the sliding window

test, by approximately 5 dB, for detecting short transients and about as good to within 1

dB for detecting longer transients. Moreover, these results do not depend on the number

of bins with transient signal energy, M. Page's test is the easiest of any of the tests to

implement. It also requires the least memory, needing to store only a single scalar value.

To within a half dB, it performs as well as the other tests in nearly all cases considered.
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Figure 4. The qignal-to-noise ratio required per bin for 50% detectability with false alarm

rate a = 0.001 false alarms per DFT as a function of the number of bins Al with signal

energy for a DFT of length N = 64 with a transient of length ef (a) r = 1. (b) r = 4, (c)

r = 8, (d) r = 12, (e) r = 16, and (f) r = 32 blocks. For Pages test, 6 = 0.1 was used.

The window size for the sliding window test and Wolcin's test is K = 16. Lorden's test was
designed for a minimum SNR of -20 dB.
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Figure 5. The signal-to-noise ratio required per bin for 50% detectability with false alarm
rate a = 0.001 false alarms per DFT as a function of the number of bins Al with signal
energy for a DFT of length N = 1024 with a transient of length of (a) r = 1, (b) r = 4,
(c) r = 8, and (d) r = 16 blocks. For Page's test, s = 0.05 was used. The window size for

the sliding window test and Wolcin's test is botest was designed for

a minimum SNR of -20 dB.
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3.7 Conclusion

The detection of transient signals is an especially difficult problem because, in general,

transients occur at unknown times and have unknown durations, waveforms, and ampli-

tudes. By using maximum likelihood considerations we have addressed the problems of

unknown arrival time and unknown duration of transient signals, and the resulting de-

tector, Page's test, performs favorably in this regard. Various detectors which have been

proposed in the literature were analyzed in the context of transient detection and simula-

tions were used to determine their performance. Page's test, which is the easiest of the tests

to implement, performed very well in comparison to the other tests.

81



3.8 Appendix - Summary of the Approach of Wolcin

3.8.1 Introduction

In (23], Wolcin derived a test for detecting transient signals using the sample energy

spectral density as the observation. Fixed sample size (FSS) tests were considered where

the test operates on the samples in a K x N time/frequency grid. The design objective of

the detector was that it should be robust with respect to the distribution of the transient

signal energy in the two dimensional time-frequency space. Moreover, it should not assume

a particular model for the transient signal, such as an autoregressive moving average model

(ARMA). Wolcin derived a generalized likelihood ratio detector and showed that in certain

situations this approach outperformed simple energy detection by requiring a lower SNR for

50% detectability. By combining the GLR detector with energy detection, Wolcin proposed

to achieve good performance in all or most situations. Because the time when the transient

occurs is not known, Wolcin uses a sequential algorithm which successively performs multiple

FSS tests. We now review Wolcin's procedure in some detail.

3.8.2 The Robustness Objective

As stated above, a detector is desired which will perform well for a wide variety of tran-

sient signals. No structure is assumed for the process causing the transient. The transient

can be narrowband in nature such as a sinusoid with finite duration or an exponentially

damped sinusoid, or the transient can be broadband. Since it is assumed that the tran-

sient signal is independent of the background noise, the presence of a transient results in

an increase in the total energy (power) which is to be detected by processing the observa-

tions of the sample energy spectral density. The actual increase in ei."-g- in a particular
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time/frequency bin due to the presence of a transient signal is assumed unknown, further

complicating the detection procedure.

3.8.3 Unknown Background Energy Spectral Density

In addition to not knowing the energy spectral density of the transient, the ESD of

the background noise is assumed unknown, as well. The background ESD is assumed to

be stationary or slowly varying with time so that the following spectral estimation can be

implemented. The time samples are grouped in blocks of N for processing via the Discrete

Fourier Transform (DFT). Let Xkn denote the squared magnitude of the output of the DFT

for the k'. a time block and n'th frequency bin. Wolcin uses the recursive estimate for the

unknown ESD

Gkn = (1 - a).Gkl,n + QZkn, (33)

where Ikn is the estimate of ESD for the n'th frequency bin at time k and where a is a

parameter between zero and one. This estimate gives past observations an exponentially

decreasing weight and this allows the estimate to change slowly with time. The parameter

a is chosen to compromise the objectives of speed in adapting to changes in the background

spectrum versus the steady-state variance of the estimate. After initializing the estimate

and allowing it to stabilize, the spectral samples can be normalized or whitened by the

spectral estimate by

Xk, = Zkn/Gkn.

If a transient signal was detected in a particular time/frequency bin, then that sample

should not be used to estimate the background noise level so that (33) is modified to

Gkn = - 1,,_ if transient detected in bin (k,n)
(1-a)Gk-l,n + aZkn, otherwise.
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3.8.4 The Fixed Sample Size Transient Detector

For a fixed number of blocks K and frequency bins N, the detectors derived are fixed

sample size detectors based on observations of the normalized energy samples Xk, for

k = 1,2,...,K, n = 1,2,...,N. In order to simplify the derivation of a detector, the

following ideal assumptions are made about the distribution of the {Xkn} (these are identical

to those in Section 4). Under the null hypothesis H0 when only the background noise is

present, the {Xkn} are assumed to be independent and identically distributed exponentially

distributed random variables with a mean of one. (Note: the first and last coefficients

actually have X2 distributions but we assume these coefficients are not used for simplicity.)

This would be the case if the input to the DFT was a white Gaussian process and if we

ignored the effect that the normalization process has on the distribution of the energy

samples. Under the alternative hypothesis H1 where noise and transient signal are present,

the energy samples are still assumed to be independent exponentially distributed random

variables, but now sample Xkn has mean Pkn where Ykn > 1. Thus we have the binary

hypothesis testing problem

Ho :p(X) = p(X) = KNp J EJ -ExpXk 0 <kk), OX
k=1 n=1K N

H X)=p(X= 1 1 exp o-VnPk) < xkn < C
k=l n=1-- Akn

Assuming the parameters {jin} are known the optimal detector is given by the likelihood

ratio test

P1 (XIp) > Ii Declare H1

po(X) < = Declare H0 .

Since the means {Pkn} are unknown, they are replaced with their maximum likelihood

estimates given by

I Xkn, ifXkn _ Il+So~n =  1, if.k < I+So

84



where S is a parameter which we may choose to optimize. The resulting detector is a

generalized likelihood ratio (GLR) test given by

VZ V >h =* Declare H1
K N Declare H0,

k=1 n=1

where

fXkn-1-logXkn, if Xkn > 1+S
0, if Xkr <1+ S.

This detector can be compared with energy detection which is given by

K N
> h : Declare H,

xkn < h = Declare H0 .
k--1 n--1

This detector implements the locally optimal detector for testing "Akn = p* > 1,k =

1,2,...,K, n = 1,2,...,N" versus "Ikn = 1,k = 1,2,...,K, n = 1,2,...,N" and is

uniformly most powerful for all p* > 1.

3.8.5 Performance

In order to determine the performance of the proposed detectors, it is convenient to

relabel the K x N observations of Xkn to be {Xn}n=l where N' = K x N, and similarly

for Ykn. Thus the GLR detector is

N'IV/ h  Declare H,= < * Declare H0 ,

and the energy detector is

N'N1 >h Declare HI
= < - Declare H0.n=1

Using a Central Limit Theorem argument for large N', the distributions of the test statistics

A and B under the two hypotheses are approximately Gaussian with the appropriate means
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and variances. For the purpose of evaluating the performance, it is assumed that the

transient has uniform strength S in M out of N' bins. (This assumption is in contrast with

the one made in Section 5. There, we assumed that the transient had uniform strength

in M out of N frequency bins for each consecutive time block during the duration of the

transient. They need not be the same frequency bins in each time block. Here, any M

out of the whole rectangular grid of K x N = N' bins can have transient energy. For

example, There could be transient energy in the first and second DFT blocks, none in the

third through sixth, and some in the seventh and eighth. According to the assumption of

Section 5, this example would be considered as two seperate transients. However, it would

be considered only one transient here. It should be noted that these differences are not

critical. The assumptions were made only to make the performance analysis tractable.)

Now, using the Gaussian assumption, the performance can be determined explicitly.

For the GLR detector, the mean and variance of the summand when no transient signal

is present in bin n are

Po = g(So,O) = Eo[Y ] = (S0  - 1 - log x) exp(-x)dx
2 = 2(So'O) = NO_'2

a 2 (SoO) =aVar[1'n] =- 1 (x - 1 -logx) 2 exp(-x)dx 0-

and when the transient energy is present they are

= A(So, S) = El[Yn] = 0(x -1 -log x)j I exp X dx#l- (S, )- I[ J]-+So 1S +S)

= 2(34)
= + =llog x) - ex p d-?

(Analytical expressions for p(S0, S) and a2 (So, S) are given in Section 3.8.6.) Thus, the

detection problem becomes

H0 A , N(N'po, N'ao2)

HI: A- N (Mui + (N' - AI)po,Ao02 + (N' - A)o').

Let I(x) be the standard Gaussian cumulative distribution function. It is straightforward to

show that the receiver operating characteristic (ROC) indicating the probability of detection
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versus probability of false alarm a is

V~aao-(1 - a) + M(.o - ui) (35)1-1 + (N,- " (35

For energy detection, it easy to show that the detection problem becomes

H0 B , N(0, N')

H 1 : B , N(MS, N' + MS)

so that the ROC is given by

,/W@-1(1- a) - MS]1
S- it j (36)

To illustrate the performance, Wolcin determined the signal-to-noise ratio (SNR) S

required per bin to acheive a 50% detection probability as a function of the number of bins

M with transient signal energy. In this case, by solving (35) and (36) with 3 = 0.5. we find

that for the GLR detector

v/N T ca 0 -(1 - a)

Al - A0

and for the energy detector
VR 7 '-'(1 - a)

S=
M

Wolcin found that the GLR detector outperforms the energy detector for lower values of Al

whereas the reverse is true for larger values of M.

3.8.6 Sequential Implementation

In the computer algorithm MAXTRAN [23] for transient detection, Wolcin modified

the fixed sample size test described above for sequential implemenfation as follows. Each
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time a new DFT is computed, say number i, the most recent K DFT's numbered i - K + 1

through i are used to generate K detection statistics W! for k = 1, ... K according to

Wkn -11 o) (37)7k_- = - + :
j=i-k+l n=1

for the GLR detector and

W i n(38)7k=(Xjn )(8wv Z__ +,--
3=i-k-I- n=1

for the energy detector. For each i, these K statistics are compared to a single threshold

h, and if any one of the statistics exceeds the threshold, a detection is declared. For each

k, the statistic W! is in effect testing the hypothesis that a transient of length k exists.

The normalization in (37) and (38) by v1k ensures that when no signal is present the K

statistics all have the same distribution. For the GLR detector, the distribution is

and for the energy detector, the distribution is

Wik , N(O, N)

independent of k. Now, the probability of false alarm of each individual test can be set

at the same value by using a single threshold. Unfortunately, there does not seem to be a

straightforward relationship between this probability of false alarm and the false alarm rate

of the overall sequential test, and the performance of the sequential test was not evaluated

in [23]. The probability of detection can be lower bounued by the probability that the

statistic corresponding to the true length r of the transient exceeds the threshold. For the

GLR detector, that is

3 1 _ h + (M/F,)(po - it) 1
[(' 11)a, + (N -_ %o]/r)] j
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and for the energy detection it is

h-(M/"r)s ]
1[N + (M17)S] 112J

The SNR required for 50% detectability is easily found te be

-,47
A1l - 1o - M

for the GLR detector and

s = ,f-r_h
M

for the energy detector.

3.8.7 Analytical Formulae

Using the table of integrals in [211 and some tedious calculus yields the following ex-

pressions for A(So, S) and o,2(S0, S) defined in (33) which were not evaluated in [23):

p(So,S) = exp I+S0 [1 +So+S-log(l+So)]+Ei
I- +S I I_ +S/

a2 (SO,S) exp{1+S [ 2S° + S2 + 2SoS + 4S + 2S 2

+ log 2(1 + SO) - 2log(1 + So) - 2S0 log(1 + So) - 2S log(1 + SO)]

+2E( 1+So [ Slog ( +1 2s ++S(2)

+2Ei S lo(' +So)]+ IK +S)

+21 -_(1 ) +1
+ EO k!(k+1)3k=O

where

Ei is the exponential integral, Ei(x) = -dz,
Iz

C is Euler's constant, C = 0.5772156649...,

( is the Riemann Zeta-function for which ((2) = 7r2 /6.
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-4-

The Gabor Representation

4.1 Introduction

Classical time domain analysis and frequency domain analysis are the cornerstones of

most of the signal processing work in electrical engineering. These approaches, however,

can be inadequate in a variety of signal processing situations as the following example

demonstrates. Consider a single musical note played on some instrument, say a flute, for a

few seconds. The human ear hears only a single frequency being played and yet classical

Fourier theory implies that this is not the case. It is well known that any time-limited

signal has a Fourier transform or frequency spectrum with infinite support. It is apparent

that the classical theory, despite its unimpeachable validity, is inadequate for describing

human observation and perception. This inadequacy was addressed by developing hybrid

representations for signals which combine the temporal and spectral aspects of a signal,

in contrast with classical analysis which deals with only one of the aspects at a time.

Approaches that will not be discussed here are the "instantaneous power spectra" [13] and

the "evolutionary spectra" [17] both of which define a frequency spectrum that is localized

at a particular time and changes with time. Other hybrid representations are the Wigner
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distribution and the (cross) ambiguity function [12]. Another approach was explored in the

seminal paper by Gabor in 1946 [5].

Gabor proposed representing a signal s(t) according to the expansion

m=-oo n=-oo

where {Cmn} are complex coefficients, g(t) is the window function with unit energy, and a

and 0 are real parameters. Gabor originally considered a Gaussian-shaped window function

and this will be considered in more detail in Section 3. The key feature of the representation

(1) is that the coefficients correspond to a lattice of points in the two-dimensional space

corresponding to time and frequency. For example, by using a rectangular pulse as the

window function, the musical note which was inadequately described by classical represen-

tations can be represented exactly in the Gabor representation by one nonzero coefficient

for a particular arrival time and frequency, and this representation coincides with human

perception. Because the Gabor representation results in a parsimonious representation of

a continuous signal that combines temporal and spectral aspects, it has recently been the

subject of further study in various applications. The representation was first applied by

Gabor to the analysis of hearing [5], and has more recently been used in connection with

image representation and vision analysis [15,16], and with transient signal analysis [4].

Throughout this chapter, the signal s(t) is assumed to be sufficiently well behaved so as

to admit a Gabor representation. The existence and uniqueness of the Gabor coefficients has

been investigated by various authors and references can be found in [7]. The representation

is least problematic when aO = 1 and, as has been done frequently throughout the literature,

this condition is adopted here, too. Since the time axis in (1) can be scaled according to

= t/a and the window function can be scaled according to g'(t) = vr'T0g(t/l3), it suffices
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to consider the case a = 1. Now, the representation is simplified to

00 
0

s(t) E E Cmng(t - n)exp(j2mrt). (2)
c=-o n=-o0

Signals with forms similar to (1) or (2) have been considered in other contexts outside

the signal representation framework [19]. The signal in (2) could model a multiuser envi-

ronment with a single channel where each user is assigned a frequency index m and each

user transmi Is a bit sequence modulated by the window function. Alternatively, the window

function can represent the channel spreading which causes intersymbol interference (ISI). In

the multiuser context, the symbol alphabet of the coefficients {Cm } is finite as in digital

communication where Cmn can take only the values +1 and -1. However, in the context

of the Gabor representation, the coefficients can be arbitrary complex numbers. At first,

this might seem a complication of the multiuser situation, but actually it is a simplification.

Now, any optimization done over the coefficients is an unconstrained optimization and this

will result in analytically tractable solutions, in contrast with solutions which implement

the Viterbi algorithm in the multiuser/ISI setting.

In Section 2, the determination of the Gabor coefficients is discussed and two methods

are compared when the desired signal is corrupted by noise. In Section 3, the representation

is considered when a Gaussian-shaped window function is used, which is the most corw ,, iy

used window function in the literature. In Section 4, an exponential window function is

considered and the representation is applied to transient signal detection for finite observa-

tion intervals. The results of this section are extended to infinite observation intervals in

Section 5, resulting in a sequential detection algorithm for transient signal detection.
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4.2 The Gabor Coefficients

4.2.1 Introduction

The transform pairs, the forward transform and the inverse transform, related to the

various Fourier representations - the Fourier transform, the Fourier series, and the discrete

Fourier transform - are used frequently in the signal processing community. The special

property that makes these transform pairs tractable is the orthogonality of sinusoids. As

is obvious from the Gabor representation (2), the basis functions are not orthogonal for

general window functions. Consequently, the forward transform to compute the Gabor

coefficients is considerably more complicated than in the more familiar transforms.

4.2.2 The Wigner Transform

Before considering the methods for the forward transform, it is instructive to look at

the generalized Wigner transform, also called the complex spectrogram. Consider a window

function g(t) of unit energy and define the generalized Wigner transform S(rw) of a signal

s(t) according to [1,6,12]

O0

S(r,f) = J s(t)g*(t - -r) exp(-j2rft)dt, (3)
-00

where g*(t) is the complex conjugate of g(t). Then, the inverse transform is given by [see

12 for details]
00 00

S(t) = J ] S(r,f)g(t - r)exp(j2irft)drdf. (4)
-00

Discretizing the double integral in (4) by using a rectangular approximation and sampling

thp integrand at r = 0, ± 1, ±2,... and at f = 0, l 1,-±2,... results in the following approx-

imation
00 00

s(t) - Z E S(m,n)g(t- n)exp(j2m7rt). (5)
m=-oo n-oo

Except for the approximation, (5) is exactly the Gabor representation in (2). This suggests
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similarly discretizing the integral in (3) to approximate the coefficients as follows

S(m,n) ;z E s(k)g*(k - n)exp(-j2rmk)
k=-oo (6)

= (k)g*(k- n).

Unfortunately, the approximation is poor and is not even a function of the frequency index

m. Nevertheless, it is apparent from (5) that the Gabor representation and the Wigner

transform are related. These relationships are explored in [1,2,7].

4.2.3 The Gabor Coefficients via the Biorthogonal Function

There are two approaches to computing the Gabor coefficients. One has been used

widely in the literature while the other has been curiously overlooked in the work on the

Gabor representation, despite the fact that the tools and techniques have been available

for quite some time. The popular approach is presented first. Details can be found in

[1,2,3,4,7].

For a signal x(t), define its Zak transform (Zz)(z,f) according to

00
(Zx)(z,f)= E x(z-k)exp(-j2krf).

k=-0o

Then, the Gabor coefficients for s(t) can be computed from

I I

Cmu = J Zs)(z, f) exp[-j2ir(mz + nf)]dzdf.
(zg)(z,f)

0 0
A more convenient formula is obtained by considering time domain processing instead of

Zak transform domain processing as follows. Define the function Y(t) according to

S= (Zg).(t,f)'

assuming this integral exists. The function y(t) is called the biorthogonal function of g(t)

because it exhibits the property00
g(t - n)-t*(t - 1) exp[j27r(m - k)t]dt = 5(n - 1)5(m - k). (7)
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Using this property, the Gabor coefficients can easily be seen to be given by

00

= J s(t)7*(t - n)exp(-j2rmt)dt. (8)
-00

This method of computing the coefficients will be called the biorthogonal function method

(BFM).

4.2.4 The Gabor Coefficients via the Projection Theorem

The second approach to computing the Gabor coefficientc can be developed in two ways,

one using a Hilbert space approach and one using a random variable approach. We consider

the Hilbert space development first.

It will be assumed that the functions {fn, m,n E Z} are linearly independent over

the observation interval I C IR where

fmn(t) = g(t - n)exp(j2mirt). (9)

If the biorthogonal function exists, then the following lemma establishes the linear indepen-

dence of the functions when defined over JR.

Lemma. If the biorthogonal function y(t) corresponding to g(t) exists, then the set of

functions defined by (9) are linearly independent over R.

Proof. Assume that the functions are linearly dependent. This implies that for some k

and I and coefficients {Cmn}

f(t = E E Cmfmn(t)
mik n$l

or equivalently

g(t - l)exp(j2kri) = y C,.,,g(t - n)exp(j2mrt) (10)
m#k nol
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for all t E 1R. Multiplying both sides of (10) by .y*(t - I)exp(-j2krt) and integrating over

JR yields

I g(t - -)(t-I)dt = E Cmg(t - n) I g(t-n)y*(t-l)exp[j2(m-k)i1]dt. (11)
-00 m#k nl _00

By the biorthogonality property (7), the left hand side of (11) is equal to 1 while the right

hand side is equal to 0. Thus, the functions must be linearly independent. U

Let g(t) be a function in L2 (I), the Hilbert space given by

L2 (I) = {f: I -C; 1flL2 < M}

where the norm V! -IL 2 is induced by the inner product

(fg) = fj f(t)g*(t)dt, (12)

so that IfhL 2 = (f, f) 1/2. Consider the space of functions G(I) defined on I given by

00 00
G(I) = {f E L 2 (I) : f = E E Cmg(t - n)exp(j2mrt) for some {C,,,) EC}.

mi=-oo n=-oo

It is apparent from its definition that G(I) is a linear vector space. Since G(I) C L 2 (I),

the inner product on L2 (1) in (12) is also an inner product on G(I). Thus G(I) is a pre-

Hilbert space. In order to show that G(I) is a Hilbert space, G(I) must be shown to be

complete, that is, any Cauchy sequence in G(I) must converge to an element in G(I). This

is demonstrated by the following theorem.

Theorem. G(I) is Hilbert space.

Proof. From the discussion above it suffices to show that G() is complete. First, the

lattice of points L given by

L = {(m,n) : m,n E 7}
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is linearized and ordered as depicted in Figure 1. Now, instead of the functions {fn.; m, n E

Z) in (9), we have {fn; n E IN}.

,,m .... ,L ..... ° .°

..'... ... .... ......... ........ _..... .........
J18 5K 3 12

19612 11

.._ ... -.... 8 :9 • :1 ...0 : .
.21 :22 123 :24 :25

.. .4 .... ......4 .... ......4 .... ..... ..... ...4 -

Figure 1. An ordering of the points in L.

By the Gram-Schmidt orthogonalization procedure [10], a countable set of orthonormal

functions {en; n E IN) is obtained satisfying for each n E IN

span{f, f 2 ,..., fn} = span{el,e2,... ,en).

Let f be a function in G(I). Using the new ordering of the lattice and the new orthonormal

spanning vectors, f can be written as

00

f(t) = E Anen(t) (13)
n=1

for t E I. Since JJfj12 < oo, it follows that E"n IAn J2 < 00. In other words, {A,A 2,...} is

in 12, the Hilbert space of square summable sequences with the ordiaary Euclidean inner

product and norm denoted by 1" 1112 . Let {fk} be a sequence in G(I) so that in the form

(13),
00

fk(t) k (

n=1
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and let x k be the element in 12 given by xk = {Ak, A, .... 1. Since

00
llfk _ mi2 12 =l k_ mI1

- f L2 = Z IAk - Am= 12k XIL2,
n=1

{fk} is a Cauchy sequence in G(I) if and only if {xk} is a Cauchy sequence in 12. Since

12 is complete, xk converges to z 0 0 = {A , Ac,... in 12. It now suffices to show that fk

converges to the function f' given by

00

f 0 0 (t) = Ej A0en(t)
ia=1

which is obviously in G(I). Now,

llfk _f001 2 
- Z IA - A I 2 = 1- XI 112 0

n=1

as k - 0, which completes the proof. U

Now that it has been established that G(I) is a Hilbert space, the Projection Theorem

and its corollaries can be exploited. Consider a finite collection of functions {f, f2....

in G(I) where

fi(t) = g(t - li)exp(j2kiirt)

for some ki and li, for i = 1,2,... ,n. An arbitrary function h E G(I) can be projected onto

the closed subspace S generated by the collection of functions, and the result is the unique

vector h in S which is closest to f. The minimizing vector h can be expressed as

nh(t) = _ ,f,/(t).
i=l

The {ai}, which are the Gabor coefficients for h, can be computed from the normal equa-

tions:

(fl, fMcal + (f 2 , f,)a 2 +"" + (fn,)an = (h, f,) (14)

for i = 1,2,... , n. In some situations, such as when a finite observation interval is used or

when frequency indices higher than some number are not allowed, it makes sense to consider
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the projection of the function onto some subset of the Gabor basis functions. Moreover,

when h E L2 (I) but h . G(I), the Projection Theorem still holds. Thus, ti,is method gives

the optimal vector in the desired subspace in the sense of minimum distance, whereas the

method using biorthogonal function will yield a suboptimal vector. Thus, the Hilbert space

method would be preferred when h E G(I) is corrupted by noise. This will be discussed

in further detail later. When all the Gabor coefficients of a function h E G(I) are desired,

the normal equations are still valid but now an inf ite system of linear equations has to

be solved. The infinite system of equations can be solved iteratively by solving the finite

set of equations and by increasing the subspace onto which the function is projected by one

dimension on each iteration as the following lemma demonstrates.

Lemma. Let h E G(I). Let fl, f2.... be an ordering of the Gabor functions. Let hn, be

the projection of h onto the subspace generated by {fl,f2,... ,f,}. Then h, -+ h.

Proof. It is easy to check that

oc

libn - hill 2 = Z aj 2 (15)
i=n+l

where ai is the coefficient of e i in the orthonormal representation of h. Since {i, a .... } E

12, the right hand side of (15) tends to zero as n - 0, which completes the proof. U

Although this theorem guarantees that the finite dimensional solution hn given by

n
hn(t) = ZAf,(t)

i=l

converges to h in G(I), it does not guarantee that the individual Gabor coefficients AP

converge to the Gabor coefficients of h. Theorems and conditions for the convergence of

the solutions of the finite systems of linear equations to the solution of the infinite system

of linear equations can be found in [8].
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4.2.5 The Gabor Coefficients via Maximum Likelihood Estimation

The method involving the normal equations can be arrived at from a random processes

approach and this will further extend the optimal properties of this approach. Consider a

signal s(t) = st({Cmn.}) with the Gabor representation (2) corrupted by additive complex

white Gaussian noise n(t) with zero mean and autocorrelation function E[n(s)n*(t)] =

No(t - s). Thus, the received signal r(t) is r(t) = s(t) + n(t). Given the Gabor coefficients,

the likelihood of the received waveform is

P[{r(t),t E I}{Cm; m,n E ZH} = Aexp[fl({Cvun})/2No] (16)

where

Q({Cmn}) = 2 {f s*({Cmn})drt} _j si({Cmn})I2dt, (17)

and A is a positive constant which does not depend on {Cmn}. Setting

Zmn = j g*(t - n)exp(-j2mrt)dri, (18)

we have that

J S({Cmn})drt 0. 0 (19)
m=-oo n=-oo

In light of (16)-(19), it follows that the statistics {Zmn; m,n E 7} are jointly sufficient

statistics for {Cnn; m,n E 7}. The second term on the rigl.t hand side of (17) is easily

shown to be

0w 00 00 00

]1st({Cmn}) 2 dt = z E z z Ckl(f-I,fmn)CMn.. (20)
k=-o0 1=-oo m=-o n=-oo

Order the coefficients Cmn in a vector C, for example using Figure 1, and similarly order

the statistics Zmn in a vector Z. Corresponding to this ordering, define the signal cross

correlation matrix R whose entries contain the inner products of the form (fA, fnn). Now

(17) can be rewritten as

P(C) = 2R{CHZ} - CHRC (21)
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where CH is the complex-conjugate transpose of C. The vector C which maximizes (21)

is the maximum likelihood estimate of C and is given by the solution of the infinite system

of linear equations

RC = Z, (22)

which for R invertible, has solution C = R-1Z. This is exactly the result obtained from

the Hilbert space approach and (22) are the normal equations. If instead of considering all

the Gabor coefficients only a finite number are permitted to be non-zero, then the above

derivation can be used to find the MLE of C which will result in the finite system of normal

equations in (14). This corresponds to the projection onto the finite dimensional subspace

of Gabor functions. When R is invertible in the infinite system of linear equations, C is an

unbiased estimate of C, as is demonstrated below. Since E[Zmn] is given by

E[Zmn] = E [j 9 *(t - n)exp(-j2mrt) { 1 Ckg(t - l)exp(j2kirt) +n(t) dt
Ik=-oo 1=-oo

-_0 C0 jg*(t - n)exp(-j2mrt)g(t - 1)exp(j2kirt)dt,

k=-oo I=-oo

it follows that E[Z] = RC. Since E[C] = R - 'E[Z], E[C] = C. As done with the Projection

Theorem, it can be shown that the finite dimensional approximations 3n(t) converge to s(t)

in the mean-square sense, but Cib corresponding to the approximations need not converge

in expectation to the true Gabor coefficients C. However, if the signal is such that only

a finite set of coefficients are nonzero, then the finite solution of the normal equations is

unbiased, as well.

The distribution in (16) is of exponential family form and is of full rank because of

the linear independence of the Gabor functions. Since C is a function of the sufficient

statistics and is unbiased, it follows from [9, Theorem 2.1.2] that each element in C is a

uniformly minimum variance unbiased estimate of the corresponding element in C. Thus,

in the presence of white Gaussian noise, the Gabor coefficients computed by the projection
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method will have smaller variances than those computed with the biorthogonal function.

Note that the procedure above is easily modified when the noise is non-white Gaussian noise,

in which case the processing is similar to the one given by the Gauss-Markov Theorem [10].

The optimality properties of this method still hold.

The philosophical difference between the approach using the biorthogonal function and

the approach using the normal equations can be clarified through the analogy with inter-

symbol interference or a multiuser channel. If a single data symbol is desired in the ISI case

or a single-user receiver in the multiuser channel, then one approach is to prncess the data

so as to null out the interfering symbols or users. The other approach is to simultaneously

estimate all the symbols or users and in essence "subtract out" the undesired ones from

the original signal. When the interference has a structure that is known a priori, then this

can be exploited in the simultaneous estimation and the second approach should be better.

For signals with the Gabor representation, filtering with the biorthogonal function nulls

out all the basis functions except the one of interest, but this may amplify the noise at the

same time. On the other hand, the solution of the normal equations is an implementation

of simultaneous estimation of the Gabor coefficients and deals with the interference, the

desired signal, and the noise in a unified approach.

4.2.6 The Distribution of the Gabor Coefficients

In order to determine the performance of the two schemes in estimation and detection

problems, it is necessary to determine the distribution of the coefficients when the schemes

are applied to signals embedded in zero-mean white Gaussian noise. As both approaches

process the data in a linear fashion, the sequence of estimated Gabor coefficients for white

Gaussian noise calculated by either method is itself a Gaussian random process. Thus, it

is sufficient to determine the first and second order moments of the process. Since both
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schemes yield unbiased estimates of the Gabor coefficients for a signal with the Gabor

representation embedded in zero mean noise, the mears of the estimated coefficients are

the true Gabor coefficients.

The second order moments are as follows. Let n(t) represent the noise with autocorre-

lation function E[n(s)n*(t)] = N06(t - s). Then, the second order moments for the method

using the biorthogonal function is easily seen to be

00

E[(1% - Ckl)(C ,, - Cmu)] = No J 7*(t - l)y(t - n)exp[j2ir(m - k)t]dt

-00 
(300-(23)

= No J 7* (t)7v(t - (n - 1)) exp[j2-r(m - k)t]dt.
-00

In particular, the variance of each coefficient is
O0

Var[Cml = No J IY(t)12dt. (24)

-00

When the maximum likelihood estimates for the Gabor coefficients are used, the esti-

mates are given by t = R-1Z as given in the previous section. It is easy to check that

under the white Gaussian noise assumption the vector of sufficient statistics Z has covari-

ance matrix given by E[ZZH] - NOR. Thus, the covariance matrix of the coefficients

is

E[(Cb - C)(C - C) H ] = R-'NoRR-' = NOR-'.

4.2.7 Practical Computation of the Gabor Coefficients

In order to compute the Gabor coefficients by either method described above, the

integrals in (8) or (18) are computed. In real applications, the integrals would be computed

by approximating them with finite sums. If the biorthogonal function has infinite support,
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it is necessary to truncate it to an interval, say [-1, 1]. Then, the integral is approximated

by

Cmn i+ S i+ n+ exp -j2i" , (25)
1=0 i=-I

where L samples are taken per second. The right hand side of (25) can be computed effi-

ciently using the Fast Fourier Transform (FFT). Similarly, truncating the window function

if necessary, the sufficient statistics in (18) are approximated by

L:-1 I-I

Zmn E LG i+ r +n+ exp -(2,l-m ,) (26)
1=0 i=-I

which can also be computed with the FFT. The only difference between (25) and (26) is the

use of the biorthogonal function in (25), while (26) uses the window function or matched

filter.

4.2.8 The Extension to Real Signals

Both of the methods described are easily extended to real signals of the following form:

00 00

S(t) = E E Amng(t - n)cos(27rmt -Omn). (27)
mn=1 ,i=-Oo

If both the window function and the biorthogonal function are real valued, it can be checked

that the Gabor coefficients {Cmn} of a real signal such as the one in (27) will satisfy

C-m,n = C; n. It is assumed this is so. By expanding the cosine term into complex

exponentials, it is easily seen that

Aon cos(Oon) = Con

Ann cos(Omnn) = Cm., + Cm,n = 23 {Cmn}

Am sin(Omnn) = (Cmn - Cm,n)/j = 2({Cmn}

Am,I 2 = 41Cmni 2

tan(Orn) = j(Cm. + C...n) _{{Cm.}

C., - C_.m,n ={Cmn}"
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These relationships hold for both methods discussed for complex signals operating on the

real signal in (27) in the absence of noise.

For both methods, care must be taken when the signal (27) is corrupted by additive

white Gaussian noise. It no longer makes sense to consider complex Gaussian noise since

the imaginary part can be removed without loss simply by taking the real part of the signal.

Thus, the noise is assumed to be real without loss of generality. When the biorthogonal

function is used, this assumption does not affect the computation of the coefficients. It

does, however, affect the distribution of the estimates of the coefficients. Now, in addition

to the second order moments in (23), the following moments are required to fully specify

the distribution:

00

E[(Ckl - CkL)(tCmn - Cmn)] = No I -y(t - I)y(t - n)exp[j2r(m + k)t]dt. (28)
-00O

The distribution of the real and imaginary parts of the Gabor coefficients can be determined

from the moments in (23) and (28). See [3,4] for an example of this procedure.

For the maximum likelihood method, the complex sufficient statistics {Zmn} for the

complex case are still jointly sufficient for the real signal in noise case. Equivalently, the

statistics {(Zmn),%(Zmn)} are a set of real statistics which are jointly sufficient. Now,

however, the signal cross correlation matrix R must contain the real inner products

J(t - I)g(t - n)cos(27rkt) cos(27rmt)dt,

Jg(t - 1)9(t - n)cos(27rkt) sin(27rmt)dt,

Jg(t - I)g(t - n)sin(2rkt) sin(27rmt)dt.

These correspond to the correlation between 3 {Zkj) and 3 {Zmn}, between f{Zkl} and

Zi{Zmn), and between Za{Zkl} and aZmn, respectively. The procedure for computing
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the maximum likelihood estimates proceeds as before but with the new matrix and suffi-

cient statistics. As before, the distribution is completely determined by the signal cross-

correlation matrix R. An example of this procedure is given in Section 4 for the exponential

window function.

4.3 The Gaussian Window Function

The original window function that Gabor considered in his representation is the Gaus-

sian window function given by

gG(t) = /4) exp[-rt2/r2. (29)

The parameter r 2 controls the width of the window and the other constants were chosen

so that f Ig(t)j2dt = 1. The Gaussian window function has the property that the transform

S(f) of the translated and sinusoidally modulated window s(t),

s(t) = )1/4 exp[-ir(t - to) 2 /r 2 ] exp[j(2rfot + 6)] (30)

has the same form as s(t), namely,

S(f) = (2r2)1/4 exp[-,rr2 (f - fo) 2] exp{-j[27rto(f - fo) -

Let At be the root mean square duration of a signal x(t) and let Af be the root mean

square duration of the Fourier Transform of z(t). The celebrated uncertainty principle

requires that AtAf > r. Equality is achieved for the sinusoidally modulated Gaussian

pulse in (30). This property implies that this signal has the maximum resolution in the

time/frequency space. This was the motivation for the choice of the Gaussian window
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function in the Gabor representation. The Gaussian window function was later used in the

two-dimensional setting of vision analysis and image representation [15,16]. Throughout

the literature, the biorthogonal function of the Gaussian window in one dimension (or two

for images) has been used exclusively to compute the Gabor coefficients.

The biorthogonal function for the Gaussian window was found to be [1,2]

= exp(rt2/r2) n (-1 )n exp [r n+
n>t/r-I/2

where K0 = 1.85407468... is the complete elliptic integral for the modulus I/V2. The

window function and biorthogonal function are shown in Figure 2 for r 2 = 1, and in Figure

3 for r 2 = 0.5. It is clear that for smaller values of r for which the Gaussian pulse is very

narrow, the biorthogonal function concentrates its energy in areas where the Gaussian pulse

is smallest in order to compute the coefficients. Therefore, in the presence of noise most

of the signal energy is ignored and the noise is amplified. This is in contrast to matched

filtering where the filter amplifies portions with large signal values and attenuates portions

with small signal values.

As pointed out in [7], -yG(t) is not square integrable. It follows from (24) that if the

biorthogonal function is used in the presence of white noise, the variance of the resulting

Gabor coefficients would be infinite. However, in any real application the function would

have to be truncated to be realizable, and since the biorthogonal function is bounded, the

variance of the Gabor coefficients would be finite. Using a truncated biorthogonal function

results in biased estimates of the coefficients. Thus, a balance must be struck between the

estimation bias and the estimation variance when truncating the biorthogonal function.
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Figure 2. (a) The Gaussian window function G(t) and (b) the biorthogonal window

function YG(t) for r2 = 1.
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Figure 3. (a) The Gaussian window function 9G(t) and (b) the biorthogonal window
function 70~) for r.2 = 0.5.



In order to use the projection method, the signal cross correlations are required:

0

(41, fk+ml+n) = f gG(t - 090 - I - n)exp(j2rmt)dt

-00

00

= (-1)mn J gG(t - nl/2)gG(t + rj12)exp(j27rmt)dt

-00

0_0 r,(t- n-/2) 2 
_r(t + 1n/2)2

-)mn J vfexp 2 2 cos(2 rmt)dt

-00

-(-1)m exp (rm 2 r) exp , (31)

- r(m,n).

Note that the expression in (31) "almost" factors into a product of two terms, one which

depends only on the time difference n and one which depends only on the frequency differ-

ence m. Had the expression factored, the inversion of the signal cross correlation matrix

R which is required for the maximum likelihood estimates would split into the product of

the inversions of the two factors. If it was known, for example, that only even frequency

indices m can have non-zero Gabor coefficients, then (31) would factor and would result in

simpler processing. This factoring would be especially useful in a sequential computation of

the Gabor coefficients because of the decoupling between the delay index and the frequency

index. For sequential processing, there may still be the promise of reduced computation due

to the unusual form of (31), and this could be an area of study for practical implementation.

Although the linear independence of the Gabor functions insures linear independence

of the columns of the signal correlation matrix, the doubly infinite matrix need not be

invertible. It must be positive semidefinite though. Numerical difficulties were encountered

in the inversion of finite signal cross-correlation matrices with large time and frequency

dimensions, and it is hypothesized that the infinite matrix is not invertible. This does

not mean that a unique solution does not exist for the normal equations. However, even
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when a unique solution does exist, it would need to be computed iteratively by solving the

finite system of equations for progressively higher order systems [8]. This is assumed to be

impractical and so estimates can be obtained by using only the solution to a single finite

system of normal equations.

Figure 4 shows the real part of a signal with the Gabor representation using the Gaus-

sian window with r 2 - 1, and, using the same coefficients, the real part of the signal with

T2 = 0.5. The signal has three nonzero coefficients and there is no noise present. Using

the biorthogonal function restricted to the interval [-10, 10], the coefficients were computed

by using the technique discussed in Section 4.2.7. L = 64 samples are taken per second.

Similarly, the sufficient statistics were computed by truncating the Gaussian window to the

interval [-10: 10]. However, little is lost in the truncation of the Gaussian window since it

decays exponentially to zero, unlike the biorthogona function.

In order to compute the maximum likelihood estimates, the vector of sufficient statistics

has to be multiplied by the inverse of the signal cross-correlation matrix, which is doubly

infinite. Instead, a two-dimensional filter is designed to filter the sufficient statistics. This

filter is obtained as follows. For a fixed maximum frequency index difference M - 1 and

delay index difference N - 1, an AIN x MN matrix R is defined according to

RnAfI+m,AI+k = rn(m - k, n - 1) (32)

for m = 0,1,..., M - 1, n = 0,1,. .. ,N- 1, where r(m, n) is defined in (31). From the form

of (32), R is a Toeplitz-block, block-Toeplitz matrix. After A-' is computed, the middle

row vT of the inverse is extracted because vTZ is the estimate of the middle coefficient of

the MN x MN grid. The elements of v are ordered into an Al x N two-dimensional filter

which is used to filter the two-dimensional array of sufficient statistics. Thus, the estimate

of each Gabor coefficient is obtained from the MN neighboring sufficient statistics. Since
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Figure 4. The real part of a noise-free signal with the Gabor representation using the

Gaussian window function with three non-zero coefficients for (a) r2 = 1 and (b) r2 = 0.5.

The locations and values of the coefficients are indicated in the figures. The Campling rate
was L = 64 samples per second.
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r(m, n) decays exponentially with m and n, reasonable values of Al and N can be chosen

to yield nearly optimal results. This procedure was implemented with Al = N = 5.

The magnitudes of the coefficients computed by the two methods for the noise-free

signals in Figure 4 are shown in Figure 5 for r 2 = l and in Figure 6 for 7 2 = 0.5. Note that

the sidelobes that result from filtering the sufficient statistics could be removed by using

a larger filter. For example, when r = 0.5, the sidelobes in the time index disappear but

the sidelobes in the frequency index appear. This is because the sufficient statistics are

now more correlated in the frequency index as seen from (31). A rectangular filter which is

longer in the frequency axis would solve this problem.

Complex zero-mean Gaussian white noise of variance a 2 = 2 per sample (a 2 = 1 for

each the real part and the imaginary part, which are uncorrelated) was added to the signals

in Figure 4 and the real part of these signals are shown in Figure 7. The resulting coefficients

are depicted in Figure 8 and Figure 9. As seen in Figure 8, the results for the maximum

likelihood method are only slightly better than those for the biorthogonal function method

for r 2 = 1. However, the maximum likelihood estimates for 7 2 = 0.5 shown in Figure

9 clearly have better noise properties than the other estimates. Heuristically, because of

the mismatching involved in using the biorthogonal function, it seems reasonable that the

maximum likelihood method would be better when the noise is large or when r 2 is small.

When the noise is negligible and r 2 is moderate, say r2 > 1, there may be little to gain by

using the maximum likelihood method, which is slightly more complicated to implement.
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Figure 5. The magnitudes of the coefficients for the signal in Figure 4(a) using (a) the

biorthogonal function method and (b) the maximum likelihood method.
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Figure 6. The magnitudes of the coefficients for the signal in Figure 4(b) using (a) the
biorthogonal function method and (b) the maximum likelihood method.
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Figure 7. The real part of the signals in Figure 4 for (a) r 2 = 1 and (b) r2 = 0.5 with
additive complex white Gaussian noise with variance ai2 = 2 per complex sample. The
sampling rate was L = 64 samples per second.
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Figure 8. The magnitudes of the coefficients for the signal in Figure 7(a) using (a) the

biorthogonal function method and (b) the maximum likelihood method.
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Figure 9. The magnitudes of the coefficients for the signal in Figure 7(b) using (a) the

biorthogonal function method and (b) the maximum likelihood method.
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4.4 The Exponential Window Function

4.4.1 Introduction

While the Gaussian window function is well suited for signals which are made up of

pulses with continuous and unimodal envelopes, it can not model well discontinuities in a

signal, such as the type encountered in transient signal analysis. For this reason, the expo-

nential window was investigated in [4]. Exponentially decaying sinusoids have been previ-

ously used to model transient signals, especially in relation to Prony's method [11,14,18].

The exponential window function ge(t) is given by

g(t) = V'Cexp(-At)u(t), (33)

where A is a parameter and u(t) is the unit step function. The leading constant in (33) is

chosen so that f 19(t)12 dt = 1.

4.4.2 The Biorthogonal Function Method

The biorthogonal function for the exponential window is [3,4]

-exp( At)[
,Ye(t) = =[-u(t + 1) + 2u(t) - u(t - 1)].

This function is zero outside the interval [-1 : 1] which simplifies the computation of the

Gabor coefficients:
1

C J s(t + n)7e(t)exp(-j27mt)dt. (34)
-1

The window function and the biorthogonal function for A = 0.5 are shown in Figure 10,

and those for A = 4 are shown in Figure 11.

A further simplification is [3,4]

Cmn = Dmi - exp(-A)Dm,n-I
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Figure 10. (a) The exponential window function g,(t) and (b) the biorthogonal function

7,(t) for A = 0.5.
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Figure 11. (a) The exponential window function ge(t) and (b) the biorthogonal function

-y,(I) for A = 4.
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where
I

Dmn 1 s(t + n)exp(At)exp(-j2rrnt)dt.

0

In (41, the statistics of the Gabor coefficients in real white Gaussian noise with autocorre-

lation function Nob(t - s) are derived and the results are included here for later reference.

Suppose the NM coefficients {Cmn;0 < m < Af - 1, 0 < n < N - 1} are desired, and let

mn = R{Cmn} and CL = {Cmn}. Let Cn be the (2.1 - 1) component vector

c = [,-R c ... c cI CI... cM1n -... 1 j (35)

and let C be the (2A- 1)N component vector

C [CT c ... C T. (36)

Since CO,n is real, C, is omitted in (35). Tie covariance matrix for C is

E[CCT] - NO[exp(2A) - exp(-2A)lP 0 Q, (37)2A

where = 0 denotes the Kronecker product, the N x N matrix P is the tridiagonal Toeplitz

matrix 1 -o0

-= [ .7 . (38)

0 -a 1

with

a = [exp(A) + exp(-A)]- ', (39)

and the (2M - 1) x (2A1 - 1) matrix Q is given by

A A
(Q)mk = 4A2 + 47r2 (m - k) 2 + 4A2 + 47r 2 (m + k) 2  0< m k <M-1

r(m+k) + r(m-k) 0<k<l-1
"(Q)M-I+m~k = 4A2 + 47r 2(m + k) 2 + 4A2 + 47r 2(m - k) 2 ' I < m < Al - 1

r(m + k) + r(m - k) 0 < k < M-
(Qt )k,M-I+m = 4A2 + 4r 2(m + k) 2 + 4A2 + 47r 2 (m - k) 2 ' 1 < m < M - 1

A A
(Q)M-I+m,A-I+k = 4A 2 + 47r2(m - k)'2 - 4A2 + 4r2(m + k) 2 ' < k, rn < M - 1.

(40)
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4.4.3 The Maximum Likelihood Method for Finite Observation Intervals

Consider a finite observation interval I = [0, N] and let the allowable frequency indices

m satisfy 0 < m < M - 1. The received signal r(t) consists of a real signal s(t) given by

N-1 Al-I N-1
s(t) = 1 Ao,nge(t - n) + 1 E Amng,(t - n)cos(2rmt + Omn) (41)

n=O m=1 n=0

corrupted by additive real, white Gaussian noise n(t) with E[n(t)n(t + r)] = N06(r). Below,

the method described briefly in Section 2.6 for handling the real signal case is developed

in detail using the example of the exponential window function. A different derivation is

possible which uses complex sufficient statistics and matrices, but the approach taken here

is to use all real signal processing.

The signal in (41) can be rewritten in the form

N-I M-1 N-1
s(t) = Uo,,ge(t-n)+ E E_ [Umnge(t-n)cos(27rmt)+Vmng(t-n)sin(2rmt)] (42)

n=O m=1 n=O

where
Uo,n = A 0,n

Umn = Amn cos(Omn) (43)

mn = Amn sin(Omn).

For a given set of coefficients {Umn, Vmn}, the likelihood of the received waveform is

P [{rt, t E 1}){Umni I'n 1] = K exp (2f({Umn, 'mtn))/N 01 (44)

where

fQ({Umn, ,Vn}) = 2 j st({UmIm,})drt - I IS({Unn, Vm})12dt (45)

and K is a positive constant that does not depend on {Umn, Ymn}. Set

'inn = J ge(t - n)cos(2rmt)drt
1 (46)

Qmn = ge(t - n)sin(2irmt)drt.
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Then

N-1 Al-I N-1
s ({U . V .,n})dri E Z U°,nIO,n + E Z [Umnlmn + Vmn Qmn ]. (47)

n=O m=1 n=O

It follows from (44)-(47) that {Imn;0 < m < N - 1,0 < n < N - 1} and {Qmn; 1 < m <

N - 1,0 < n < N - 1} are jointly sufficient statistics for the distribution (44). Define the

following signal cross-correlations:

rI[(k,1),(n,m)] = fl ge(t - 1) cos(27rkt)g,(t - n) cos(27rmt)dt, 0< 1 < N - I
0< 1,n <N-1I

0 < k < Ml - I
rIQ[(k,l),(n,m)] = f19e(t-I)cos(2rkt)g,(t- n)sin(2irmt)dt, 1 < m < -1

0< 1,n<N-1

1 < k < Ml - 1
rQI[(k,l),(n,m)] = fjge(t - l)sin(27rkt)ge(t - n)cos(2rmt)dt, 0 Z m-< M -1

0<1,n<N-1

rQQ[(k,l),(n,m)] = fjge(t - l)sin(27rkt)ge(t - n)sin(27rmt)dt, 1 < km < Al-1
O< 1,n < N - 1

(48)

Now, the second term on the right hand side of (45) can be written as

M-i N-1 l-i N-1

ts, (I.m., V.,.)12dt= .Ukr"rz[(k,1),(n,m)IUm.
k=O 1=0 m=O n=0

Al-1 N-i M-I N-i

+2 E E > 1 Vk.rQ[(kl),(n'm)Umn (49)
k=i 1=0 m=0 n=0

At-I N-1 M-1 N-1

+ E E Z VktrQQ[(k,1),(n,m)]Vmn •

k=i 1=0 m=1 n=0

Define the (2M - 1) component real vector Wn by

Wn = [UO,n UI,n .. UMI,n V,n " " V 1,n] (50)

and the (2M - 1)N component real vector W by

W = [WT T...wT ]T (51)

Similarly, define the (2M - 1) component vector Tn of sufficient statistics by

T = [0,n. 126 (52)
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and the (2M - 1)N component vector T by

TTT TT...T T . (53)

Arrange the (2M - 1)N x (2M - 1)N signal cross-correlation matrix R according to

(R)1(2M-l)+k+l,n(2M =)+m+l r11 [(k, 1), (n, m)], 0<km<M-1

(R~i2M_)+Mk~n2M_)+mI =rQl[(k,l),(m,n)], l<k<Mf-1 O<m<i-1L(2M.-)+M±,n(2M-1)+m+ 0<i,n<N-1
(R)1(2MI)+k+l,n(2MI)+M+m _ rQ[(k,l),(n,m)], <k<M-l O<m<M-1

0<1,n<N-1

1), 1<k m<M-1(R)1(2MI)+M+k,n(2MI)+M+m = rQQ(k, ),(n, )], O-<,n<N-1

Now, (44) can be expressed as

Q({Umn, Vmn}) = 2WTT - WTRw. (55)

The maximum likelihood estimate of V, WIMLE, maximizes (55) and is the solution of the

set of linear equations

RV T,

which, for R invertible, has solution

W'MLE = R-1T. (56)

It is straightforward to show that

E [WMLE] = W

E [(WM LE - W) (VMLE - W)T] = NoR - 1 . (57)

The procedure outlined above is valid for any window function. When the exponential

window function is used with the observation interval I = [0, N], the signal cross-correlations
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in (48) are as follows:

r 1 [(kI),(m,n)] = 2A2 ri(I,n) 14A2 + 4rr2 (m - k) 2 + 4A2 + 4ir2 (m + k)2]

r 1Q[(k, 1), (m,[n)] = Arl(In) 2r(m-k) 2r(k+m) 1
=4A2 + 4-r2 (T( - k) 2 + 4A2 + 4r 2(m + k)21

rQ 1[(k,[),(mn)] = Arj(In) 27r(k - m) 2ir(k + m) 1
4,2+ 47r2(M - k) 2 +4,\ 2 + 4ir2(m + k) 2j

r[(kl),(mn,n)] = 2A2r1 (!,n&) [4A2 + 4ir2 (m - k) 2 - 4A2 + 47'2(m + k)2]

where r1( 1, n) is given by

r,(1, n) - e\(I+n) [e-2\(Vn) _ e-2AN

with x V y = max(x,y). Because the signal cross-correlations factor into a product of

two terms, one which depends only on the delays I and n and one which depends only on

the frequencies k and m, the signal cross-correlation matrix R factors into the Kronecker

product

R = RI ( R 2  (58)

where RI is the N x N matrix with entries

(R1 ),,, = exp{A(l + n)} (exp{-2A(! V n)} - exp{-2AN}]

and where R 2 is the (2M - 1) x (2M - 1) matrix with entries

2A2  2A2
(R2)mk- 4A 2 +47r 2(m-k)2 4A2+4rr2(m+k)2  O<k m< -1

2Ai(m + k) 2Ai(m - k) 3 < k < A - I
(R2)k'M- Z+m - 4A 2 + 47r 2 (m + k)2  4A2 + 47r 2 (m - k) 2  I < m < Al - 1

2Ar(m + k) 2Ar(m - k) 0 < k < M -1
(R2)M-.+m'k Z- 4A 2 + 47 2 (m + k) 2 + 4A 2 + 4n-2 (M - k)2  I < M < Ar - 1

2A2  2A2

(R2)M-1+m,M-.I+k 4,\2 + 47r 2 (m _:)2 - 4A 2 + 47r2 (m + k) 2  1 < k, m < A - 1.

(59)

Note that the matrix R2 and the matrix Q in (40) are identical to within a scale factor.

However, R 2 is part of the covariance matrix of the sufficient statistics, or, through (57),
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related to the inverse covariance matrix of the maximum likelihood coefficient estimates.

On the other hand, Q is part of the covariance matrix of the coefficients estimated by the

biorthogonal function.

The fact that signal cross correlation matrix factors into a Kronecker product simplifies

the processing to compute WMLE = R-1T since

1 2
R -' = (R 1 ®R 2

- ' = Rj- QR R . (60)

4.4.4 Examples using the Exponential Window

A noise-free signal with three nonzero coefficients using the exponential window function

for A = 0.5 is shown in Figure 12 along with the same signal corrupted by additive zero-

mean white Gaussian noise with a variance of a2 = 1 per sample. The magnitudes of the

Gabor coefficients computtd for each of the two methods for Al = N = 16 for the noise-

free case and the noisy case are shown in Figure 13 and Figure 14. The sampling rate was

L = 1024 samples per second. Figure 15 shows a signal and its noise corrupted version with

same coefficients as that in Figure 12 but with A = 4. Figure 16 and Figure 17 show the

corresponding coefficients. Overall, the quality of the noise free estimates is nearly identical.

For this example, the overall quality of the estimates in the noisy case is roughly the same

for A = 0.5 but the maximum likelihood method is clearly superior for A = 4. This agrees

with the intuition that the biorthogonal function method performs poorly for large values

of A in the presence of noise because it amplifies the portion of the signal where the window

function is smallest, thus amplifying the noise.

In order to quantitatively compare the performance of the two schemes, the variance

of the estimates of Umnn and V'M, in (43) are compared. From (37)-(40). the estimation
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Figure 12. A real signal with the representation in (41) using the exponential window
function with A = 0.5 (a) without added noise and (b) with white Gaussian noise with
variance o,2 = 1 added per sample. The three non-zero coefficients are shown in (a). The
sz-,pling rate wa. L = 1021 :amples per second for the processing but L = 64 samples per

second was used for this figure.
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Figure 13. The magnitudes of the coefficients of the signal in Figure 12(a) computed
using (a) the biorthogonal function method and (b) the maximum likelihood method. The
sampling rate was L = 1024 samples per second.
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Figure 14. The magnitudes of the coefficients of the signal in Figure 12(b) computed

using (a) the biorthogonal function method and (b) the maximum likelihood method. The

sampling rate was L = 1024 samples per second.
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Figure 15. A real signal with the representation in (41) using the exponential window

function with A = 4 (a) without added noise and (b) with white Gaussian noise with

variance o2 = 1 added per sample. The three non-zero coefficients are shown in (a). The

sampling rate was L = 1024 samples per second for the processing but L = 64 samples per
second was used for this figure.
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Figure 16. The magnitudes of the coefficients of the signal in Figure 15(a) computed

using (a) the biorthogonal function method and (b) the maximum likelihood method. The

sampling rate was L = 1024 samples per second.
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Figure 17. The magnitudes of the coefficients of the signal in Figure 15(b) computed

using (a) the biorthogonal function method and (b) the maximum likelihood method. The

sampling rate was L = 1024 samples per second.
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variance for the biorthogonal function method is

_NO[exp(2A) - exp(-2A)l A
Var[Um ] = 2A [A + 4A 2 + 162m21

Var[Vmn] = NO[exp(2A) - exp(-2A)] [ 1  (A_)
2A ["A 4A 2 + 16r2m2J

The variances for the maximum likelihood estimates of Umn and V-mn are found according to

(57) to be the product of No and the corresponding element in R - 1 on the main diagonal.

The inverse was computed for Al = N = 16 using the simplified structure in (60). Let

pu(m,n) and pv(m,n) be the reduction in estimation variance for Umn and Vmn obtained

using the maximum likelihood estimates instead of those obtained by the BFM, that is

Var [(Umn)BFNI]

PU(m,n) = Var [(U,,,,)MLE]

pv m, ) =Var [(Vmn)BFMJ-,VarPV(m,n) = V4VnME

Define the following:

Pmax = max max pU(m,n), max pv(m, n)1

I O<w<N-1 O<nZN-lp0mi n I <m<M-I m. vmn

Pmin = mil amin- PU(m,n), min pV(r,7)mo<m<AfI 1<M<31-I

IO<n<N-1 O<n<NV-1

1 [MI N-I Al-i N1j
Pan= T-A- - 1)N 0 ,i pu(m,n) + E E pr(m,,n)(2M m=om= n=O

S=2N I)N E E Zlop(m,n)+ Z : 10loog 0 pv(m,n)

(2 - m=O n=o m=1 n=0

These quantities were computed for AI = N = 16 for A E [0.1, 10] and the results are

depicted in Figure 18. This figure shows that the maximum likelihood estimates have

uniformly lower variance than the other estimates as guaranteed by the theory. Note that

little is gained on the average using the maximum likelihood method for small values of A,

whereas a reduction of at least a few dB can be expected for A > 2.
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Figure 18. The maximum, average, and minimum reduction in the estimation variance

obtained by using the maximum likelihood method instead of the biorthogonal function

method to calculate the coefficients. The signal under consideration is a real signal with

the Gabor representation with Al = N = 16 using the exponential window function with

parameter A.
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4.4.5 Detection for Finite Observation Intervals

In [4], the following detection problem was analyzed. Under the null hypothesis H0

only white Gaussian noise is present. Under the alternate hypothesis H1, the received signal

consists of a transient signal together with additive white Gaussian noise. The transient is

given by the representation in (41) where only the coefficients {Am.; 0 < m < M- 1, n E ,'}

can be non-zero, where ,V is a subset of K integers in the range [0, N - 1]. Basically,

this detection problem amounts to deciding if a transient begins at a specified time with

unknown frequency index. Since the values of the non-zero coefficients of the transient

signal are assumed to be unknown, a generalized likelihood ratio test is derived which uses

the coefficients derived from the BFM in [3,4]. The detector is summarized here. Reorder

the vector C in (36) into the vector x so that

x= [xTxT]
T

where x, is the (2M - 1)K component vector corresponding to the nonzero coefficients in

the transient signal and x 2 is the (2M - 1)(N - K) component vector corresponding to the

remaining coefficients. Let A be given by A = E[CCT] which is defined in (37) and has

been reordered to correspond to the new ordering of C, and let r = A- 1 . This reordering

admits the following partitioning of A

A = [All A22 1

The test statistic derived from the genernlized likelihood ratio test T, is given by [see 4 for

details]

T- xTA-lx - xTA-'x 2. (62)

It is shown that under H0 , T1 is chi-square distributed with (2.11 - 1)K degrees of freedom.

Under H 1 , T1 has the noncentral chi-square distribution with (2,11 - 1)h" degrees of freedom
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and noncentrality parameter 62 given by

62 u (A ll- A 12 A 2 'A2 1 ) 1'22 (63)

uTriul

where u is the vector of the true Gabor coefficients of the noise-free transient.

The same detection problem is now considered using the maximum likelihood approach

in order to determine if the lower estimation variance of the maximum likelihood estimates

translates into better detection performance as well. Again, a generalized likelihood ratio

is used to determine the test statistic T)

T2= max 2logP[{r, t E [ON]} {Um.,nVmn}.Umn = Vmn =0 for n{U..,vm.; ,E.&r}

- 2logP[{rt, t E [O,]) Umn = mn = 0 Vm, n]

1
= max Q({Umn,Vnn}). (64)
O {Um,Vmn; nEA}
Umn=Vmn=O n0.KV

Again, reorder the coefficient vector V of (51) into a vector y so that

Y'= [T T] T

where yl is the (2m - 1)K component vector corresponding to the non-zero coefficients of

the noise free transient and Y2 is the (2m - 1)(N - K) component vector corresponding to

the other coefficients. Similarly, reorder the vector T of sufficient statistics in (53) into a

vector z = [1 zf]T. Also, define a matrix S by reordering the matrix (1/NO)R to match

y and z, where R is the signal-cross correlation matrix in (54). The matrix S admits the

partition corresponding to y and z,

[Sil S12]

It follows from (55) and the fact that Y2 = 0 that

fl({Umn,Vmn}) =2y-Tz - NoyTSlTYj (65)
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and that z1 is the vector of the jointly sufficient statistics for this detection problem. The

vector S I which maximizes (65) for $11 invertible is

YI- 11 -' 1  (66)

for which the achieved maximum is

max Ql({Umn,Vmn1) = "zso ' Z 0TSi

{Umn,Vn, nEAr}
Umrn=Vmn=o ng"

Thus, the test statistics is

T2 = 1 TSIIl. (67)

Note that the vector 1 is not the same as the first partition of the overall maximum

likelihood vector WMLE computed without restricting any coefficients to be zero. It is,

however, the projection onto the subspace determined by the non-zero coefficients.

Since $I1 is symmetric and positive semi-definite, by the Cholesky decomposition there

exists a lower triangular matrix L such that LLT = S11. In light of (57), LTkI is a vector

of independent and identically distributed Gaussian random variables with zero mean and

a variance of one. It follows that T? has the chi-square distribution with (2M - 1)K degrees

of freedom under H0 . Under I1I, T-2 is noncentral chi-square with (2M - 1)K degrees of

freedom and noncentrality parameter 62 given by

6 = T(68)

Using the approach in [41 another detector can be developed which uses the maximum

likelihood estimates. To apply the same technique used to derive (62), let w = [wT wT]T

be the reordered vector of global maximum likelihood estimates WMLE in (58). From (57),

the covariance matrix E of w is E = S- 1. The new detection statistic T3 is then exactly
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as in (62), with w and E replacing x and A,

T3 = wTE-1w- ww 2 . (69)

Using the matrix identity

= S 22 - S(70)

T3 can be expressed in terms of the signal cross-correlation matrix by

T3 = W SW- WT (S22 - S21Ss1
1 S12) w2. (71)

There are two things to note about T3 from (69). First, this detection statistic is a function

of the global maximum likelihood estimates, not the local ones as in T,). Second, since

w = (1/No)S-lz, T3 is apparently a function of all the components of z, not just the

sufficient statistics which were shown to be zl by (65).

Once again, T3 has the chi-square distribution with (2M - 1)K degrees of freedom

under Ho. Under Hl, T3 is noncentral chi-square with (2M - 1)K degrees of freedom and

noncentrality parameter 2 given by

2 uT (= 1 UT 12 2 "2121)
-1

= uTS1ul. (72)

By comparing b (68) and b2 (72), it is apparent that T1 and T3 have identical distributions

under H0 and H1 , and, therefore, they have the same performance. It will now be shown

that the two statistics are in fact equal.

Proposition. T 2 = T3 .

Proof. From (70) and using the identities w = (1/N0)S-lz and E = S- 1,

N2 T3 = ZTEz - [I 2 zi + . T F22 [E21 1 + E 2 2z2]
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.4 Z11 Z1 + ZTE1 Z2  )z +Z1  ZET)zq

- E _ .TEsE-1 IE22

12 -''Z -222 zE~ -Z 2 E 2 2 E'Ez

1 zfiz f 1 2 E~'22

= 4T (Ell - h2 E2 21) Z1

= zT Sjlz1

= N2wTSIiWl

= NoT 2 . U

The implication of this result is that the test statistic T3 in fact only uses the sufficient

statistics and no more, even though it may appear otherwise.

The value of the second expression for the detection statistic can be seen from the

following scenario. Suppose one is interested in testing several alternatives against the null

hypothesis. Different alternatives may have one or more non-zero coefficients in common.

Using the test statistic T,2, the local maximum likelihood estimates (LMLE) must be com-

puted for each alternative, and the coefficients in common to more than one hypothesis will

have different LMLE's. However, if the statistic T3 is used instead, the global maximum

likelihood estimates are computed for all the Gabor coefficients at once. These estimates

are then processed according to (69) for each alternate hypothesis. This may be more effi-

cient and also less ambiguous about estimates of coefficients in common to more than one

alternative. Furthermore, it may be important from a data visualization standpoint to have

estimates for all the Gabor coefficients, and thus the statistic T3 is the natural choice.

Note that the noncentrality parameters b in (63), (68), and (72) are generalized signal-

to-noise ratios. They are linearly proportional to 11uJ 2 and, since r"1 in (63) and Sll in
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(68) and (72) are inversely proportional to N0 , they are inversely proportional to No. Since

the distributions of T1 and T2 (or 73) have the same distribution under H0 and, aside from

the different noncentrality parameters, they also have the same distribution under Hl, it

follows that the gain of one detection scheme over the other is fully determined by the

noncentrality parameters. Accordingly, define the detection gain G(u) in signal-to--noise

ratio by
62G(u) = -

U (All- A 12 Ay1A 2 1 ) - 1

uT 1 -)

uTri u i
ulT1

This gain represents the additional signal-to-noise ratio required for the detector T1 of [4]

to have the same probability of detection as the maximum likelihood detector T 2 or T3 for

a fixed probability of false alarm. It is easily shown to be independent of ]lull 2 and N0 .

Let ei be the (2M - 1)N component vector such that (ei), = 1 and (ei) 1 = 0 for j # i.

Define the following qua-tities:

Gmax = max G(e,)
I<i<(23l-1)N

Gmin = min G(ei)
1<i<(2 Al-I) N

1 (2?  ,% ,"

Gavg- (2.1 -1), ) G(e,)

12A (21 -l)N

GdB-avg = (22M-1) )N 10P"i o G(e1 ).

These correspond to the maximum, minimum, and average gains for detecting a transient

signal which has a single nonzero coefficient. In Figure 19, these quantities are shown for

M = N = 16 and A E [0.1, 10]. These curves point to the same conclusion as the curves

showing the reduction in estimation variance in Figure 18. Specifically, the maximum
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Figure 19. The maximum, average, and minimum gains in signal-to-noise ratio defined
by the additional SNR required by the detector using the biorthogonal function method to
attain the same performance as the detector using the maximum likelihood method. The
signal under consideration is a real signal with a single non-zero coefficient in the Gabor
representation with Al = N = 16 using the exponential window function with parameter A.
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likelihood detector T2 or 73 is always better than the detector TI, and on the average it

will be several dB better for A > 2.

4.5 The Exponential Window with Infinite Observation

Intervals and Sequential Transient Detection

4.5.1 Introduction

The processing of a block of data representing a finite observation interval can be

important once this block has been identified as warranting further analysis. However,

transient signals have unknown arrival times, and in many applications data is arriving

continuously. For these reasons, it is more practical to consider signal processing schemes

which process the incoming data sequentially. Thus, when a transient actually arrives, it

can be detected with little delay so that further processing and action can be taken.

With this philosophy in mind, the maximum likelihood technique for determining the

Gabor coefficients using an exponential window is analyzed when the observation interval is

the entire time line, that is t E 1R. At first glance, this would seem to make the processing

unrealizable since the sufficient statistics now require matched filtering an infinite interval of

data. However, it will be shown that the processing actually simplifies and is realizable when

an infinite observation interval is considered. Moreover, the maximum likelihood processing

results in the sequential processing of the data and in the sequential computation of the

Gabor coefficients. Using the sequential estimation, a scheme is proposed and evaluated for

the sequential detection of transient signals.
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4.5.2 Maximum Likelihood Estimation of the Gabor Coefficients for

Infinite Observation Intervals

There are two ways to analyze the computation of the maximum likelihood estimates of

the Gabor coefficients when an iniinite observation interval is considered. One uses filters

and sequences and the other uses matrices and vectors. Because the finite observation

interval problem has already been presented using matrices and vectors, it will be more

intuitive to continue using this approach here. It should be noted, however, that both

methods are equivalent. The matrices and vectors in this situation axe "doubly-infinite" so

that a matrix A has entries Amn, for m, n E Z and a vector v has entries v, for n E Z.

Pictorially, the matrix can thought of as

• A-,,-I A-l,0 A-l1 "-..

A = A0,- 1  A A0 1
• -. A 1,-. A,0 A1 ,1

and the vector can be symbolized by

v = [... vI 1 ,0 V . ]T.

The analysis in Section 4.4.3 concerning the sufficient statistics, the signal cross-

correlations, and the functional form of the maximum likelihood estimates applies to the

present situation as well, setting I = IR. Now, the sufficient statistics are given by

00 00

gn J (t - n) cos(2,mt)drt = g,(t- n) cos(27rmt)drt
- 00 71*

-00 n (73)

Qmn -- g,(t - n)sin(2,nit)drt = 1 (t-n)sin(27rm)drj.
-00n

These sufficient statistics are not realizable because they require observations from the semi-
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infinite interval [n,oo). The signal cross-correlations in (48) are easily evaluated, yielding

rll[(k,1),(m,n)] = 2A2 exp{-Aln - 11 ) +4r 2 (m - k)2 + 4A2 + 14r2 (m + k)2
[ 2-r(m - k) 2r(k + m) 1

r'Q[(k,I),(m,n)] = Aexp{-Aln -111 4 21 .- k)1. + 4 +r( + )
L4A'2 + 47r 2 (m -)

2 +4A 2 + 4ir2 (m + k )2 J[ 2ir(k -m) 2r(k +m) 1
rO1 [(k,1),(m,n)] = Aexp{-AIn -/I} 1 . "r( - ) 2 2(m + )

14A2 + 47r2 (M - k)2 4A2 + 4ir2(m + k )2 J
TQQ[(k,l1), (m, n)] = 2A2 exp{-Aln - 11}~ 1 1]

r4A2 + 4r2(m - k) 2 - 4A 2 + 47r 2 (m + k)2 "

Once again, the signal cross-correlations factor into a product of two terms, one depending

only on the difference in delay In - 11 and the other depending only on the frequency indices

m and n. Thus, the signal cross-correlation matrix R factors into the Kronecker product

R = R1 0 R 2 where R1 is the doubly-infinite Toeplitz matrix with entries

(R1)I,n = exp{-Ain - /}

and R 2 is the same matrix as before (59). In order to compute the maximum likelihood

estimates, the inverse of R and, hence, the inverse of R 1 are required. The inverse of a

doubly-infinite Toeplitz matrix can be found by computing the Z-transform of the sequence

of coefficients in any column of the matrix, and finding the power series expansion of its

reciprocal. Specifically,

00R (z) = E (R , ),,,0. "

f00

oo oo

00 00

= Zexp+-An)z- + exp-An - 1

0 0

1 1

1 - exp{-A} +1 - exp{-A}z

1 - exp -2A}
- exp{-A}z-' + (1 + exp{-2A}) - exp{-Alz"

Thus, the reciprocal of the Z-transform is

1 1 -exp{-A} z-1 + l+exp{-2A} exp{-A}
Rl(z) 1 - exp{-2A} 1 - exp{-2A} 1 - exp{-2A}
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from which it follows that RT 1 is symmetric tridiagonal Toeplitz with entries

(1 + exp{ -2A}
1 exp{-2A}', if n= I

1_-exp{-2A }' if in -I 1 (74)
1 - exp{-A} if -L>1

The structure of the vector of sufficient statistics T which is composed of the doubly-

infinite sequence of (2M - 1) component vectors T. in (52) is

Define a doubly-infinite sequence of (2MI - 1) component vectors t,, by

n - -exp{ -A)}n~ + +exp{-2A} n+ - exp{--A}_ Tnl
1i~ = - exp{-2A} TY 1 - exp {-A) ~ 1 - exp{-2A) +

The sequence {t,,} is the result of filtering the sufficient statistics with Ri 1. In keeping

with the structure of Tn, let the components of t,, be denoted imn and qm according to

t= [iO,n~ il**iM -1 , qj,n qjMf -,nj

Define the function h(t) by

h(t) 1 Ixpf -AL gt + 1) + 1 +exp{-2A} e(t - exp{ -A} 1t-1
1 ep-2)1 - e _ -(t) + 1 - exp{j-2A19~g 1

1 2 e{A _ exp - At) [- exp{I-2A) u(t + 1) + (1 + exp{-2A}) u(t) - u(t - 1)) .

Note that h(t) is zero outside the interval [-1,11. It can easily be checked that in and

q,, are given by

imn = Jh(t - n) cos(27rmt)drj

= J = h(t - n) sin(2-'rmt)dri.
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These equations are reminiscent of the filtering in the biorthogonal function method in

(34). The filter h(t) is shown in Figure 20 for A = 0.5 and A = 4 for comparison to the

biorthogonal function in Figure 10 and Figure 11. It is apparent that h(t) performs matched

filtering, in essence, by amplifying regions with large signal values and attenuating areas

with small signal values. This is in contrast with the biorthogonal function which does the

reverse. Also, the calculation of the statistics {inan,qmn} is realizable and does not require

the calculation of {Imn,Qmn). A further simplification of the computation can be made

by setting

Zmn = 1 - exp{ } exp{-At cos(2rmt)drt+n

0

1m - ex A]exp{-At} sin(2-itmt)dri+n

so that

imn = (I + exp{-2A})7T,,n - exp{-2A}Tm,n- 1
(75)

qmn = (1 + exp{-2A}) 71n,n - exp{-2Aqm,n-.

The (2M - 1) component of maximum likelihood estimates of the coefficients with time

index n, Wit with form (50), is given by

wit = R2-lt_.

Thus, the calculation of the coefficient estimates for the time index n depends only on the

observations from the interval [n - 1, n + 1]. This yields the desired sequential implemen-

tation.

Because a simple analytic form is available for R "11, the estimator variance of the two

schemes can be analytically compared when .! = 1, that is when only baseband transients

are considered. Then, R 2 reduces to a scalar. The variances are found from (57),(59),(61),
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Figure 20. The filter h(t) used in the sequential computation of the maximum likelihood
coefficient estimates for (a) A = 0.5 and (b) A = 4.
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and (74) to be

Va [BFM 1 = 0Var 2 = sinh(2A), 
(76)

Var [AM1LE] = N0 coth(A)

where A. is the coefficient of the baseband pulse with delay n. The variances in (76) are

plotted as a function of A in Figure 21. The figure shows that the maximum likelihood esti-

mate has uniformly lower variance than the BFM estimate, and the reduction in estimation

variance is most pronounced for large A.

4.5.3 Sequential Transient Detection

Using the results of the previous section, a detection scheme is proposed which uses

the maximum likelihood estimates of the coefficients computed by the sequential algorithm.

Specifically, a quadratic form of the estimated Gabor coefficients at each time index and

frequency index is compared to a threshold. If one of the test statistics exceeds the threshold,

the presence of a transient is declared. This test also provides transient classification because

the positive test yields the transient frequency and delay. The details are as follows.

Let Tmn be the test statistic for a transient with frequency index m and delay n. It is

defined as follows. For m = 0, reorder the signal cross-correlation matrix S so that

(S)1.1 = 0  r [(0,0),(n,n)].

Then, To,n is simply

TOn= (S-'),, U~.

For the other frequency indices, a transient with a particular frequency index and phase

shift would show up in both 0mn and l so that a quadratic form is desired that combines

the two. Fix m and n. Reorder the signal cross-correlation matrix so that the S11 is the
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Figure 21. The variances of the estimates of the coefficients by the sequential processing
implementing the biorthogonal function method and the ma-ximum likelihood method. The
signal under consideration is a real signal with the Gabor representation with Ml=
(baseband only transients) using the exponential window function with parameter A.
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2 x 2 matrix corresponding to the pair (in,n), that is

=1 [r[(m,n), (n, n)] r'Q[(m, m), (n, n)]]
S1  - -To [rQr[(m,m),(n,n)j rQQ[(m, rn),(n,n)]j

The covariance matrix of mm [ fn nT is then Ell = (S- 1  It is easy to show

that the generalized likelihood ratio to test the hypothesis "Wmn N (u, Ell)," where

u E 1R2 is an arbitrary non-zero vector, versus the hypothesis "Vmn N(O,Ell)" is

simply

Tmn= mn'llWrn,

which is the test statistic for a transient with frequency index m $ 0 and delay n.

Note that this test statistic was developed using the maximum likelihood estimates as

the observations, not from the original observations. In terms of the original observations,

this test corresponds to the generalized likelihood ratio for testing "{Ukl, Vk, arbitrary

k, 1 E Z)" against "{Uki , Vkt arbitrary k i n2, I $ n, Umn = V, = 01" as is shown below.

The generalized likelihood 1(z) ratio reduces to

1(z) = max (2 yTZ - A, YTsY) max (2YTz _ NOY.TSY2)

- T -2 - E21Eh1 E 1 2 ) Z2

- (Z I 11 z, + 2z1 -z2 + E 12 Z2 )= l_ (Elllzl +] 2.)zr1.,)T -- Elz2 1'11 21w

- 0 (El 1 + E 2 1 z'2 )T 1 (E+1 zI + E21Z2)

=WT E-1 -
mn 11Wm

= Tmn.

This test is in contrast with the fixed sample size test in Section 4.4.5 because it was assumed

there that all the coefficients are zero except possibly the ones of interest. Here, where there
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is an infinite number of coefficients, that is not a realistic assumption. Thus, the coefficients

of interest are tested for being non-zero while not restricting the other coefficients to be

zero.

The sequential detection algorithm with thresholds h0 and h is simply

To,, > ho =*Declare transient present in bin (0, n)

Tl ,n > h ==*Declare transient present in bin (1, n)

T.41~ n > h ==*Declare transient present in bin (Al - 1,n)

Continue, n -- n + 1.

Equivalently, for each n, the maximum of the statistics {To,n/ho; Tmn/h, m = 1,... Al -

1} could be compared to a threshold of one. This could be generalized to detect more

complicated transients which involve several damped sinusoids by comparing some function

of the k out of M largest order statistics to a threshold.

The distribution of the test statistic To, is chi-square with one degree of freedom when

the corresponding coefficient Ao,n is zero. It is non-central chi-square with one degree of

freedom with noncentrality parameter 62,n given by

6,n = A , S-1 ,n

when Ao,n $ 0. The distribution of the test statistic Tmn for m 0 0 is chi-square with

two degrees of freedom when no transient is present and is non-central chi-square with two

degrees of freedom and noncentrality parameter 62nn given by

62 = T -

Um- m 1154
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where Umn = [Umn Vmn]T is the true coefficient vector.

For a given threshold h, the threshold h0 can be set according to

P{X > h} =P 2 > h}, (77)

where X1 and X2 are chi-square random variables with one and two degrees of freedom. This

means that the probability of false alarm Pf a for the decision for each coefficient, which is

given by the expressions in (77), will be the same for all m. In order to determine the mean

time between false alarms, the following convention is assumed. For each fixed n, if one or

more of the test statistics exceed the threshold, it is considered as a single false alarm. If an

alarm, false or otherwise, is detected at time n, then any alarm at time n + 1 is not counted

as a separate alarm. Using these conventions, and the fact that the maximum likelihood

coefficients for bins (k,1) and (m, n) are independent for In - 11 > 1 as a consequence of

(74), the mean time between false alarms Tpa is bounded by

2 2
S<Ta <

AIPfa - -f

The probability of detection Pd is given by

= f"P.\(6,n') > ho}, for m = 0
p{'V(62 ,)> h}, for m 0,

where X2(6 2 ) is a non-central chi-square random variable with i degrees of freedom and

noncentrality parameter 62.
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4.6 Conclusion

In this chapter, the Gabor representation was discussed because of its desirable localiza-

tion properties in both time and frequency. Two methods of computing and estimating the

Gabor coefficients were examined. The maximum likelihood estimates and detectors based

on them were shown to be superior to those obtained by the more traditional approach

using the biorthogonal function. Using an exponential window function, the Gabor repre-

sentation was applied to the detection of transient signals. A simple sequential detection

procedure was given to detect transient signals using the maximum likelihood estimates.

There are several avenues for further research. Throughout the chaptcr it has been

assumed that the delays and frequencics conl i only take on a discrete set of values indexed

by the integers. It would be necessary for a real application to determine the performance

when this assumption is not valid. Also. it was assumed that 72 for the Gaussian window and

A for the exponential window were known a priori. This may not be the case in reality. Thus,

the effect of the window mismatch could be examined. Perhaps an optimal window function

for a particular application could be designed to minimize the mismatching effects, or a bank

processors could be used to implement several different window functions simultaneaously.

Finally, detection procedures using the Gabor representation could be compared to more

traditional signal processing techniques and representations such as Prony's method and

the short-time Fourier Transform.
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5

The Optimal Sample Size for Transient Detection

5.1 Introduction

Often when sequential data processing algorithms are implemented in hardware, the

data are grouped into fixed size blocks to facilitate the implementation. An example of

this type of processing is a hardware implementation of the Fast Fourier Transform which

might be used to sequentially compute short time Fourier Transforms as data arrive. The

same approach could be used to compute the Gabor coefficients discussed in Chapter 4. In

that context, the transient model prescribed the optimal block size for the processing. The

problem considered in this chapter is to find the optimal sample size or integration period

for the detection of a transient which arrives at an unknown time.

The approach using fixed sample size tests in place of a fully sequential algorithm

was first considered for the quickest detection problem [2,3,4]. In [4], Shiryaev considered

the quickest detection problem for detecting an abrupt change in the drift of a Brownian

motion. In the fixed sample size approach which he called the Neyman-Pearson method,

the test statistics were based on observations from consecutive intervals of fixed length. He
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then considered the interval length that would minimize the mean delay in the detection

of the change for a fixed mean time between false alarms when the change is assumed to

begin with uniform distribution during the interval in which it actually occurs. Pelkowitz

and Schwartz [2] and Pelkowitz [3] considered the quickest detection problem in discrete

time. By using the Central Limit Theorem for large sample sizes, they were able to find the

optimal sample sizes for Gaussian and non-Gaussian samples. Two different criteria were

examined, the mean criterion and the minimax criterion. The mean criterion is the same

one that Shiryaev used, i.e., minimize the mean delay for a fixed mean time between false

alarms, when the change time is equally likely to occur any time during the block. The

minimax criterion attempts to minimize the expected delay for the least favorable change

time for a fixed mean time between false alarms. The least favorable change time is defined

to be the time during the integration period which yields the largest expected delay in

detection. Using an asymptotic analysis, a procedure is presented to determine the optimal

sample size and the detection threshold for these criteria.

In this chapter, the question of the optimal sample size for discrete-time observations

or the optimal integration period for continuous-time observations will be examined in the

context of transient signal detection. In order to obtain tractable solutions for the discrete-

time case, it is assumed that either the observations are Gaussian or that the transient lasts

for a large number of samples so that the Central Limit Theorem (CLT) can be applied.

As in [2,3], the discrete-time detection scheme is based on fixed sample size test statistics

S,, of the form
n(T+l)-I

Sn = E Zm.
mt = nl T

Here, T is the integer-valued sample size and zn is some function of the raw observations

{X}. Candidate functions include the log-likelihood ratio or the squared magnitude of

a DFT coefficient. These statistics are computed sequentially and a detection is declared
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when a threshold h is exceeded. In continuous time, some form of the CLT could be used

for non-Gaussian observations, but this raises many technical issues such as the definition

of the continuous-time integral. In order not to complicate the essential problem being

investigated, the continuous-time observations are assumed to come from a white Gaussian

process. The detection scheme in continuous time is based on test statistics S. of the form

nT

Sn = ] x(t)dt.

(n-1)T

Here, T is the real-valued integration period and x(t) represents the observations. Again,

these statistics are compared to a threshold h to declare a detection.

The optimal sample size and integration period for the detection of transient signals

will be examined with the optimization carried out with respect to both the mean criterion

and the minimax criterion. The performance criteria are the same as those in Chapter

3, the mean time between false alarms and the probability of detection. Thus, instead of

minimizing the expected delay as is done for the quickest detection problem, the probability

of detection is maximized according to one of the two optimality criteria for a fixed mean

time between false alarms.

In addition to the false alarm constraint in the optimization problem, an additional

constraint is instituted to achieve desirable solutions. That constraint specifies that the

admissible set of sample sizes for the optimization procedure is an interval restricted to some

neighborhood of the transient duration. The are two reasons to do this. First, this ensures

there will be relatively little delay in detecting the transient. Second, if this constraint were

not enforced, the optimization would yield a degenerate and useless solution as can be seen

as follows. The best performance one could hope for is a very large mean time between

false alarms and a probability of detection near one, but this is actually very easy obtain.
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Consider a detection scheme with the integration period equal to the desired mean time

between false alarms and a detector which always declares a transient present. This detector

has exactly the desired mean time between false alarms with a probability of detection of

one and yet it provides no useful information.

The outline for the remainder of this chapter is as follows. In Section 2, the exact prob-

abilistic model considered is presented and the necessary equations for the two optimality

criteria are derived. Numerical results are discussed in Section 3. Section 4 considers the

application of the detection scheme to narrowband signals and conclusions are presented in

Section 5.

5.2 The Transient Detector and the Optimality Criterion

We first consider the discrete-time situation. The statistical model for the transient is

specified in a manner similar to the model in t2,3]. Assume there exists a random sequence

y. such that:

i) y. is a strict-sense stationary process with 0 < E[lyImI] < oo for m < 3.

ii) y, is L-dependent, i.e., there exists an integer L such that if the event A depends on

{ym,m < n} and an event B depends on {ym,m > L + n}, then A and B are independent.

Assume the transient lasts r samples and it begins at the m'th sample of the n'th block,

i.e., at time to = T(n - 1) + m. Then, the observations in terms of the {z,} are given by

Yn, for n < to
Zn= yn +-4, for to:S n <to+r-1

Yn, for n > to + r.
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Here, A is a positive constant. This model is not as complicated as the one used in the

disorder problem in [2,3]. The model used there allowed for a change in the second order

statistics in addition to a change in mean. In that context, the covariance structures before

and after the change were made to approach each other asymptotically. A local asymptotic

approach such as this is valid for the disorder problem because, once the change time occurs,

there is an arbitrarily long time to detect the change since the change lasts forever. Thus,

even extremely weak signals could be detected by integrating and/or waiting long enough.

In the transient signal detection problem where the signal has finite duration, this small

signal approach is not realistic, and the problem becomes intractable using the more general

model.

As pointed out in [2,3], assumption ii) implies that S, and Sn+m are independent for

T > L and m > 2. Moreover, if T > L, the L samples at the beginning and end of the

sum will contribute a negligible amount to the overall sum so that all the S. will essentially

be mutually independent. It is proved in [3] that as T - oo the {S,} tend to mutually

independent Gaussian random variables using the CLT and assumptions i) and ii). We will

use this fact for large T with T > L.

As in [2,3], we define the following parameters:

MO = E[y,,]

U2 = Var[yn]

ro(m) = -E[(yn - uo)(Yn+m - po)] = o(-m)
a6

L L
'o = EZ ro(m)= 1+ 2 > To(m)

m=-L M=1
2  02

A A
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The effective noise power a 2 and the effective single sample signal-to-noise ratio (SNR)

take into account the effect of the noise correlation.

For the continuous-time model, the observed random process z(t) is defined by

x(t) = A[u(t- to)- u(t- to - r)] + n(t), (1)

where A is a positive constant, u(t) is the unit step function, to is the unknown arrival time,

r is the transient duration which is assumed known, and n(t) is a white Gaussian noise

process with mean uo and autocorrelation function E[(n(t) -po)(n(t + s) - = a2 6(s).

The SNR is defined by /3 = Ala. Setting r = oc in (1) results in the quickest detection

problem that Shiryaev investigated [4].

Note that the same variables have been used for the discrete-time and continuous-time

cases, namely the test statistics Sn, the sample size or integration period T, the arrival time

of the transient to, the transient duration r, the mean of the noise '40, the effective noise

variance a2 , and the effective SNR /3. In the remainder of this chapter both interpretations

of the variables apply unless otherwise stated.

When the transient overlaps the n'th block of samples or the n'th integration period,

the distribution of the test statistic {Sn } is

Sn N(Arn +p o0T, Ta2),

where r, represents the duration (in samples or seconds) of the period of overlap of the

transient in the n'th block. To derive this for the discrete time case, it is assumed that T

is large and T > L [2,3]. The random variables {S,} are mutually independent.

When rn = 0, such as before the transient arrives, the test statistic is distributed
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according to S.,. N(1uoT,Ta2). Thus, the probability a that a false alarm results from S.

is given by

a = P{S. > h17. = 0=1 4 h-joT)

where 4(.) is the standard Gaussian cumulative distribution function. Thus, on the average

there will be one false alarm every 1/a integration periods so that the mean time between

false alarms MF is

T

MF 
= 1,(h uoT)*

It will be convenient to define a normalized threshold A given by

A -- '( T ju0 T -h 2__ _ _ -(2)

The probability of detection is a function of the true arrival time to, but it suffices to

consider the arrival time modulo T so that it is assumed that to lies in the range 0 < to _ T.

There are two cases to consider: T > r and T < r. For the first case, the transient can

either overlap with one or two blocks as shown in Figure 1. The transient is completely

contained in one integration period if to _ T - r. If to > T - r, then the transient overlaps

with two blocks. The probability of detection Pd(to) is easily found to be

( + A) , if to < T - T

P d (tO ) = { ( 8 1 1 -10) + A ) + [I _ t ( 3 (T -0) + A ) ] 4 ( 2 .(r - T + 'O ) A ) , if to > T - r .

(3)

When T < r, the transient overlaps with at least two intregration periods as shown in

Figure 2. As seen in the figure, there are blocks on either end of the transient that contain

a mixture of noise only and transient plus noise parts, and there are a number of blocks

in the center which are completely characterized by the transient plus noise situation. The

165



(n-1)T nT (n+1)T (n-1)T nT (n+1)T

(a) (b)

Figure 1. When T > r, the transient can overlap (a) one or (b) two integration periods.

44 1 10i

-iT -

Figure 2. An example of how the transient overlaps the integration periods for T < r.
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number k(to) of the center-type blocks for the contirlious-time case can be found to be

Lr/TJ - 1, if 0 < to < T(Lr/Tj + 1) - r
k(to) = (4)1. [r/TJ, if T([r/TJ + 1)- r < to _ T,(

where Lxj is the greatest integer less than or equal to x. For the discrete-time case, the

two regions of support for k(to) may differ from those in (4) by one sample, but this will be

insignificant when T is large. The probability of a detection resulting from the center-type

blocks Pd(to) is one minus the probability that there is no detection from any of them, so

that

Ph(tO) = 1p1 -a (0 vT + tA ) (5)

The probability of a detection from the first partially overlapping block f(to) is geven by

0~~ O(Tr T-/T to)o

Pd (to) = "D ( 3(T t)+ A). (6)

The probability of a detection from the last overlapping block PI(to) is given by

(P(o - TtrIT + to) if 0< to <T(Lr/TJ +1)-r

Pdl(to) = 1- (7)[r - T([r/TJ + 1) + to] + ), if(7)lj+1)-7< <T
VT + ) ifT(r/T+l)-r<t0<T.

The overall probability of detection Pd(to) is now given by

Pd(to) = Pdc(t) + f1 - PJ(eo)l PJ(to) + 1 - Pdo(tO) I d ) (8)

The mean probability of detection Td, which is obtained by assuming that the I.ransient

signal can begin at any time during a block of samples or an integration period with equal

probability, is given by
T-i

Td yZ Pd(7) (9)

for the discrete-time case and
T

d= " Pd(t)dt (10)
0
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for the continuous-time case. In the sequel, it will be shown that the sum in (9) for large T

can be replaced by an integral of type (10) with T = 1, and the resulting approximation is

better for larger sample sizes T. Using the mean optimality criterion, the objective is to find

the sample size or integration period T* which maximizes Pd according to the optimization

problem

Maximize with respect to T: Pd

subject to: T E nbd(r)

MF fixed.

The sample size is restricted to an interval, denoted by nbd(r), containing the point T = r.

The endpoints of this interval are chosen so that the maximum of _d with T E nbd(r) occurs

in the interior of the interval and not at one of the endpoints. The reasons for adding this

restriction were discussed in the introduction and will be clearer when the performance

curves are discussed. No simplifications could be made to facilitate the computation of T*

and we must resort to numerical techniques.

For the minimax optimality criterion, it is desired to find the sample size or integration

period T** which maximizes the probability of detection for the least favorable transient

signal arrival time. The optimization problem to find T** is

Maximize with respect to T: min Pd(to)O<to<T

subject to: T E nbd(T)(11)

AfF fixed.

Again, no simple analytical expressions could be found for T**. However, it can be verified

fom (3) that Pd(to) for T > r and to _> T - r has an axis of symmetry about the time too
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given by

too = T - r/2.

For T < r, we find from (4)-(8) that Pd(to) for 0 < to < T([rTTJ + 1) - r has an axis of

symmetry about the time to, given by

tol = 'I[T(L-rlTj + 1)-r],

and that for T([r]TJ + 1) - r < to < T, Pd(to) has an axis of symmetry about the time

to2 given by

to2 = [7T(Lr/TJ + 2) - r].

Thus, {t 0 } must be the positions of local extrema of Pd(to). Some preliminary numerical

computations have indicated that one of these arrival times corresponds to a local and

possibly global minimum for a variety of signal-to-noise ratios and values of the mean time

between false alarms. Define the set A(T) of arrival times by

{AO+,(T - r) - ,(T - r)+,too, T - I Ifif T> r
A(TO+t2t2[T(Lr/TJ + 1)- T] ,[T(LTITJ + 1)- T-]+ , T- if T < r

which is the set containing the positions of the known local extrema, endpoints, and dis-

continuity points of Pd(to). To simplify the numerical computation of T** for the minimax

criterion in (11), the following optimization problem which finds an approximate solution

!"** is substituted: the minimax criterion, (11) is replaced with

Maximize with respect to T: min Pd(tO)
toEA(T)

subject to: T E nbd(r)

3 1 F fixed.

Define pdc by

pW'C = rin Pd(to). (12)

toE A(T)
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5.3 Numerical Results

Using the formulas obtained in the previous section, curves were generated indicating

the probability of detection versus the integration period for the continuous-time case.

Figure 3 shows the mean probability of detection Pd as a function of the integration period

for a transient of duration r = 1, a signal-to-noise ratio (SNR) of 20 dB, and a mean time

between false alarms MF = 109. The integration period is shown on a logarithmic scale so

as to exhibit a rough symmetry about the local maximum occuring near T = 0.58. Note

that the performance is arbitrarily good for large values of MIF but the probability of false

alarm a becomes unacceptable for these values. For example, for an integration period near

T = 109, the probability of detection is near one but so is the probability of false alarm.

For the reasons mentioned in the introduction, we will focus on the local minimum which

occurs near T = 1 and thus the optimization is restricted to an interval about T = 1.

Another graph of the mean probability of detection versus the integration period is

shown in Figure 4(a) for a transient of duration 7 = 1, an SNR of 5 dB, and a mean

time between false alarms AMF = 109 . Again, for large values of AIF, the performance

is arbitrarily good. An enlargement of the region around T = I is shown in Figure 4(b)

which indicates the presence of a local maximum. From this figure it is apparent that by

choosing T = 103 the probability of detection will be greater t~ian that obtained at the local

maximum near T = 1. For T = 103, the probability of false alarm is u = 10-6 which might

be quite acceptable. Nevertheless, we choose to focus on the local maximum near T = 1 for

the reasons previously discussed.

Similar plots were generated for the worst case probability of detection pd'C defined in

(12). In Figure 5, the worst case probability of detection is plotted versus the integration
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Figure 3. The mean probability of detection Pd as a function of the integration period T

for a transient duration r = 1, a signal-to-noise ratio of 20 dB, and a mean time between

false alarms MF = 109 .
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Figure 4. (a) The mean probability of detection Td as a function of the integration period
T for a transient duration r = 1, a signal-to-tioise ratio of 5 dB, and a mean time between
false alarms MF =109. (b) An enlargement of the area around T = 1 showing the local
maximum in the curve.
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Figure 6. (a) The worst case probabilit: of detection P w" as a function of the integration

period T for a transient duration r = 1, a signal-to--noise ratio of 5 dB, and a mean time

between false alarms MF = 109. (b) An enlargement of the area around T = I showing the

local maximum in the curve.
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period with the same parameters as in Figure 3. The results for the parameters used in

Figure 4 are shown in Figure 6. Again, the remarks made in connection with finding the

optimal integration period to maximize the mean probability of detection apply to finding

the optimal integration for the minimax criterion.

For a transient duration of r = 1, the optimal integration period was numerically

computed as a function of the signal-to-noise ratio and the mean time between false alarms.

It is shown in Figure 7 for the mean optimality criterion and in Figure 8 for the minimax

optimality criterion. The optimal integration period for the minimax criterion varies very

little with the SNR and the mean time between false alarms. The optimal value in this case

is approximately T** - 0.56.

A procedure is now presented to determine the optimal integration period for either

criterion for an arbitrary transient duration for the continuous-time case and for large

sample sizes in the discrete-time case using the curves in Figures 7 and 8. To do this, it is

useful to express the probability of detection Pd(to) given in equations (3)-(8) as a function

of all the relevant variables as follows:

Pd(tO) = Pd(to,r,T, AIF, ,A, o,go).

It is easily verified that

Pd (tO,r,T, MF, 0, A, ao,po) = Pd(-c, r F r ,rA, v'-aruo)LO T, AF, 
•r-3 ,V'_7 t

Thus, the optimization with respect to T for a given transient duration, mean time between

false alarms, and SNR is equivalent to the optimization for a transient of duration r = 1

using the normalized parameter values.
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Figure 7. The optimal integration period T* for the mean criterion for a transient duration
r = 1 (a) as function of the mean time between false alarms for a fixed signal-to-noise ratio
and (b) as a function of the signal-to-noise ratio for a fixed mean time between ralse alarms.
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The procedure is as follows:

1. Find Tj* from Figure 7 or T1* from Figure 8 for a mean time between false alarms

MF/r and an effective SNR of 3 = Vr A/a.

2. Compute T* = rT or T** = -Tt**.

3. Compute the threshold from (2), that is

h =pT V- ' ( )
or

h = pot" - 'D-1 (13)

5.4. The Application to Narrowband Transients

In this section, the design procedure is applied to the problem of detecting a narrowband

transient signal in white Gaussian noise. The problem formulation is almost exactly as set

up in [2,3] for the quickest detection problem and it is repeated here with the appropriate

modifications for the transient problem. The signal and noise are assumed to be real valued.

The signal is a deterministic sinusoid with random phase. Length N Discrete Fourier

Transforms (DFT) are computed by the windowing and overlapping methods described

in [1]. N is chosen so that at the sampling frequency f, the frequency resolution /N

equals the signal bandwidth. The single sample statistic z... is the squared magnitude of

the coefficient corresponding to the frequency band of interest from the m'th DFT. Since

the DFT's are overlapped, the statistics {Zm} will be correlated, but the correlation will be

nonzero only for a finite number of lags for white Gaussian noise. The random signal phase
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is modeled as approximately constant for the duration of each DFT and independent of the

phase during other DFT's as well independent of the noise. Let M be the number of DFT's

computed to form each test statistic S,, which is to be optimized to detect a transient of

length K DFT's. It is assumed that K and hence the optimal value of M is large enough

to ensure that test statistics have the required Gaussian distribution.

Proceeding as in [2,31, let A be the signal amplitude, D the frequency offset of the

signal from center cell, a2 the noise variance, and w(n), n = 0, 1,...,N - 1 the window

coefficients. Let r be the percent overlap of successive DFT's, i.e., rN points overlap. From

[1], we have

N-1
AO= a2 E w2(n) = c0

n=O{ 1 + 2C2 (0.5), for 50% overlap, r = 0.5
= 1 + 2C 2 (0.75) + 2C 2 (0.5), for 75% overlap, r = 0.75

where
w(n)w(n + [1 - r]N)

C(r) = n=0 E' 2nE N-1w2(n)
n=0

The effective single sample SNR f32 in terms of the input SNR 3l? in the signal bandwidth

is given by [2,3]

i1 = G( Z) = -42 G(Z,)

where the gain G(,Z) is given by
G(D.) =p e- LL( , c

1 {Z w(n)}2
P = N w 2 (n)

= w(n)e-n

IF w(n)l
= 1

Gp is the window processing gain or the reciprocal of the equivalent noise bandwidth, L,(;)

is the scalloping loss, and L, is tie loss due to the correlation between overlapped DFT's.
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Example. Suppose we are trying to detect a transient of length K = 100 DFT's with an

input SNR per cell of -5 dB. A Hamming window is used with 50% overlap. We assume

the worst case scalloping loss so that = 7r/N. From [1, table 1], we have that [2,3]

10log10 G = -3.35 dB,

so that the effective SNR is

,3 = -8.35 dB.

We will use the minimax optimality criterion to find the optimal number of DFT's M*

for a mean time between false alarms MF = 108 DFT's. To use Figure 8, the normalized

SNR and mean time between false alarms are computed by

01' = 1 + 101ogl 0(K) = -8.35 + 20 = 11.65 dB

A t = MF/1IO0 = 106 DFTs.

From Figure 8(b), T'* = 0.55 so that M = (0.55)(100) = 55 DFT's. From [1,2,3],

go = ao = 0.397N a 2 and -yo = 1.11. The threshold h* is computed from (13),

h " p , 0 .1 1 ' - / - I A
= g0A1" - 1 )

= (3G.95)Na .

5.5 Conclusion

In this chapter, the problem of the optimal sample size or integration period for the

detection of a transient signal was examined. While the framework for the discrete-time

problem was more general than that for continuous time, both cases relied on using the

Gaussian distribution for the test statistics. For the continuous-time situation, a set of
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curves was numerically computed which indicate the optimal integration period for both

the mean optimality criterion and the minimax optimality criterion. A design procedure

was given to use these curves for transients of arbitrary length in the continuous-time case

and transients consisting of a large number of samples in the discrete-time case. It was

shown that the results could be applied to the detection of narrowband transient signals.

Throughout this chapter, it has been assumed that the duration of the transient to be

detected is known to a high degree of accuracy. If the mechanics of the phenomenon which

generates the transient is well understood, then this duration may be known. However,

in some situations only an estimate is available or the duration may in fact be a random

variable. Now, the results presented in this chapter are no longer optimal although one may

still want to use the "optimal" sample size or integration period for the average transient

duration. In such a situation, this work serves more as a general guide in the design of the

detector. It demonstrates that the integration period should be one half to one times the

true transient duration.
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6

Conclusion

6.1 Summary and Future Work

This dissertation investigated sequential decision procedures to detect changes in the

statistical model of an observed random process when these changes can occur at unknown

times. Specifically, the disorder problem and the transient problem were examined with the

appropriate performance criteria for the application. Below, the results of this study are

summarized along with suggestions for further research.

In Chapter 2, Page's test was generalized by considering arbitrary nonlinearities for

detecting a change in distribution. A simple performance measure was defined which corre-

sponds to the slope of the performance curves for a large mean time between false alarms.

An analytic bound was found for this measure which allows the performance of different

nonlinearities to be easily compared. Also, by considering the local performance of Page's

test, it was shown that the measure coincides with classical detector efficacy in the or-

dinary binary hypothesis testing situation. These results relied on the assumption that

the observations before and after the disorder were independent and identically distributed
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random variables. While there have been some results for the quickest detection problem

with dependent observations using a likelihood ratio approach, there has been no work on

using variants of Page's test with general nonlinearities for the depeident case. The recent

results on extending Wald's fundamental identity to certain dependent sequences [3] might

provide the necessary framework for the development of a performance measure for Page's

test using dependent obs.rvations paralleling the work in Chapter 2.

Chapter 3 considered the application of Page's test to the detection of transient signals.

The test statistics were derived from the DFT of the observations to allow for the detection

of a change in the energy spectrum. Several other sequential tests were also considered

for this problem. Using Monte Carlo simulations, the performances were compared and it

was found that Page's test performed as well as or better than the other tests in nearly all

situations. This work represents the first time that the performances of these sequential

tests are evaluated in the context of transient detection. There is much more work that

could be done on the analytic evaluation of sequential tests. Theoretical questions such as

the expected hitting times of moving average processes could be investigated to provide a

more complete framework for analyzin3 sequential tests.

The Gabor representation was investigated in Chapter 4. It was shown that such

a representation could be useful in detecting transient signals in noise. It was further

demonstrated that for the purposes of detection and estimation, the maximum likelihood

estimates of the Gabor coefficients may be more appropriate to use than those obtained

through the biorthogonal function procedure. Several issues remain unresolved, namely.

the effects of window mismatch, delay mismatch, and frequency mismatch. Moreover, when

mismatch is expected, a window function which is robust over an uncertainty class of possible

signals might be desirable, similar to the idea of robust matched filtering. Also, the merits
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of this approach should be compared to more traditional methods such as the short time

Fourier Transform when the representation does not exactly match the actual situation.

One might also want to investigate the relative merits of the Gabor representation and the

more traditional windowing methods for the DFT used to enhance resolution [1]. Finally,

the wavelet representation [21 has recently received much attention as an alternative to the

Gabor representation but no detection schemes have been formulated and evaluated using

wavelets.

The optimal sample size for a transient detector was explored in Chapter 5. A procedure

was given to determine the optimal sample size or integration period for the detection

of a simple transient with known duration. Further work could be done on robustifying

the detection procedure to allow for arbitrary transient lengths. Perhaps this could be

accomplished by using detection statistics corresponding to different time resolutions as

might result from utilizing the wavelet representation.

As a whole, this dissertation has focused on sequential detection procedures and their

evaluation with appropriate performance criteria. Since many real signal processing schemes

are implemented in a sequential fashion but are usually only evaluated based on fixed sample

size performance, this is an area that warrants further study.
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